

Corso Ethical Hacker & Security Manager Certificato | CompTIA Security+ e PenTest+

CORSO SICUREZZA INFORMATICA E SECURITY MANAGER | CERTIFICATO COMPTIA SECURITY+ SY-701

1) MASTERING SECURITY BASIC

- 1. Understanding core security goals
 - 1.1. Security scenarios
 - 1.1.1.Ensure confidentiality
 - 1.1.2. Provide integrity
 - 1.1.3. Increase availability
 - 1.2. Resource availability versus security constraints
- 2. Introducing basic risk concepts
- 3. Selecting effective security controls
 - 3.1. Control categories
 - 3.1.1.Technical controls
 - 3.1.2. Managerial controls
 - 3.1.3. Operational controls
 - 3.1.4. Physical controls
 - 3.2. Control types
 - 3.2.1. Preventive controls
 - 3.2.2.Deterrent controls
 - 3.2.3. Detective controls
 - 3.2.4.Corrective controls
 - 3.2.5. Directive controls
 - 3.3. Combining control categories and types
- 4. Logging and monitoring
 - 4.1. Operating system/endpoint logs
 - 4.1.1.Windows logs
 - 4.1.2.Linux logs
 - 4.2. Network logs
 - 4.2.1.Firewall logs
 - 4.2.2.IDS/IPS logs
 - 4.2.3. Packet captures
 - 4.3. Application logs
 - 4.3.1.Metadata

- 4.4. Centralized logging and monitoring
 - 4.4.1.SIEM system
 - 4.4.2.Syslog

- 1.1 Compare and contrast various types of security controls
 - Categories (technical, managerial, operational, physical)
 - Control types (preventive, deterrent, detective, corrective, compensating, directive)
- 1.2 Summarize fundamental security concepts
 - Confidentiality, integrity, and availability (CIA)
- 2.5 Explain the purpose of mitigation techniques used to secure the enterprise
 - Monitoring
 - Least privilege
- 3.2 Given a scenario, apply security principles to secure enterprise infrastructure
 - Selection of effective controls
- 4.1 Given a scenario, apply common security techniques to computing resources
 - Monitoring
- 4.4 Explain security alerting and monitoring concepts and tools
 - Monitoring computing resources (systems, applications, infrastructure)
 - Activities (log aggregation, alerting, scanning, reporting, archiving)
 - Alert tuning
 - Security Information and Event Management (SIEM)
- 4.5 Given a scenario, modify enterprise capabilities to enhance security
 - User Behavior Analytics (UBA)
- 4.9 Given a scenario, use data sources to support an investigation
 - Log data(firewall logs, application logs, endpoint logs, os-specific security logs, IPS/IDS logs, network logs, metadata)
 - Data sources (automated reports, dashboards, packet captures)

2) UNDERSTANDING IDENTITY AND ACCESS MANAGEMENT

- 1. Exploring authentication management
 - 1.1. Comparing identification and AAA
 - 1.2. Comparing authentication factors

- 1.2.1.Something you know
- 1.2.2.Something you have
- 1.2.3.Something you are
- 1.2.4.Two-factor and multifactor authentication
- 1.2.5. Passwordless authentication
- 1.3. Authentication log files
- 2. Managing accounts
 - 2.1. Credential policies and account types
 - 2.2. Privileged access management
 - 2.3. Requiring administrators to use two accounts
 - 2.4. Prohibiting shared and generic accounts
 - 2.5. Deprovisioning
 - 2.6. Time-based logins
 - 2.7. Account audits
- 3. Comparing authentication services
 - 3.1. Single sign-on
 - 3.2. LDAP
 - 3.3. SSO and a federation
 - 3.3.1.SAML
 - 3.3.2.SAML and authorization
 - 3.3.3.Oauth
- 4. Authorization models
 - 4.1. Role-based access control
 - 4.1.1.Using roles based on jobs and functions
 - 4.1.2. Documenting roles with a matrix
 - 4.1.3. Establishing access with group-based privileges
 - 4.2. Role-based access control
 - 4.3. Discretionary access control
 - 4.3.1.Filesystem permissions
 - 4.3.2.SIDs and DACLs
 - 4.4. Mandatory access control
 - 4.4.1.Labels and lattice
 - 4.4.2.Establishing access
 - 4.5. Attribute-based access control

5. Analyzing authentication indicators

Objective covered:

1.2 Summarize fundamental security concepts

- Authentication, authorization, and accounting (AAA) (Authenticating people, Authenticating systems, Authorization models)
- 2.4 Given a scenario, analyze indicators of malicious activity
 - Indicators (account lockout, concurrent session usage, blocked content, impossible travel, resource consumption, resource inaccessibility, out-of-cycle logging, published/documented, missing logs)
- 2.5 Explain the purpose of mitigation techniques used to secure the enterprise
 - Access control (Access Control List (ACL), permissions)
- 4.5 Given a scenario, modify enterprise capabilities to enhance security
 - Operating system security (SElinux)
- 4.6 Given a scenario, implement and maintain identity and access management
 - Provisioning/de-provisioning user accounts
 - Permission assignments and implications
 - Identity proofing
 - Federation
 - Single sign-on (SSO) (open authorization (OAuth), Security Assertions Markup Language, (SAML))
 - Interoperability
 - Attestation
 - Access controls (mandatory, discretionary, role-based, rule-based, attribute-based, time-ofday restrictions, least privilege)
 - Multifactor authentication (implementations, biometrics, hard/soft authentication tokens, security keys)
 - Factors (something you know, something you have, something you are, somewhere you are)
 - Password concepts
 - Password best practices (length, complexity, reuse, expiration, age)
 - Password managers
 - Passwordless

• Privileged access management tools (just-in-time permissions, password vaulting, ephemeral credentials)

3) EXPLORING NETWORK TECHNOLOGIES AND TOOLS

- 1. Reviewing basic networking concepts
 - 1.1. OSI model
 - 1.2. Basic networking protocols
 - 1.3. Implementing protocols for use cases
 - 1.3.1.Data in transit use cases
 - 1.3.2.Email and web use cases
 - 1.3.3.Directory use cases
 - 1.3.4.Voice and video use cases
 - 1.3.5.Remote access use cases
 - 1.3.6.Time synchronization use cases
 - 1.3.7.Network address allocation use cases
 - 1.3.8.Domain name resolution use cases
- 2. Understanding basic network infrastructure
 - 2.1. Switches
 - 2.1.1.Hardening switches
 - 2.2. Routers
 - 2.2.1. Hardening routers
 - 2.3. Simple Network Management Protocol
 - 2.4. Firewalls
 - 2.4.1.Host-based firewalls
 - 2.4.2.Network-based firewalls
 - 2.5. Failure modes
- 3. Implementing network designs
 - 3.1. Security zones
 - 3.1.1.Screened subnet
 - 3.1.2. Network address translation gateway
 - 3.1.3. Physical isolation and air gasp
 - 3.1.4.Logical separation and segmentation
 - 3.2. Network appliances
 - 3.3. Proxy servers

- 3.3.1.Caching content for performance
- 3.3.2.Content filtering
- 3.3.3.Reverse proxy
- 3.4. Unified threat management
- 3.5. Jump server
- 4. Zero trust
 - 4.1. Control plane vs. Data plane
 - 4.2. Secure access service edge

- 1.2 Summarize fundamental security concepts
 - Zero trust (control plane: adaptive identity, threat scope reduction, policy-driven access control, policy administrator, policy engine; data plane: implicit trust zones, subject/system, policy enforcement point)
- 2.5 Explain the purpose of mitigation techniques used to secure the enterprise
 - Isolation
 - Hardening techniques (host-based firewall)
- 3.1 Compare and contrast security implications of different architecture model
 - Network infrastructure (physical isolation, air-gapped, logical segmentation)
- 3.2 Given a scenario, apply security principles to secure enterprise infrastructure
 - Device placement
 - Security zones
 - Attack surface
 - Connectivity
 - Failure modes (fall-open, fall-closed)
 - Network appliances (jump server, proxy server, load balancer)
 - Firewall types (web application firewall (WAF), unified threat management (UTM), nextgeneration firewall (NGFW), layer 4/layer 7)
 - Secure communication/access (Tunneling Transport Layer Security (TLS), Secure Access Service Edge (SASE))
- 3.3 Compare and contrast concepts and strategies to protect data
 - Methods to secure data (segmentation)
- 4.1 Given a scenario, apply common security techniques to computing resources.

• Hardening targets (switches, routers)

4.4 Explain security alerting and monitoring concepts and tools

- Simple Network Management Protocol (SNMP) traps
- 4.5 given a scenario, modify enterprise capabilities to enhance security
 - Firewall (rules, access lists, ports/protocols, screened subnets)
 - Web filter (agent based, centralized proxy, universal resource locator scanning, content categorization, block rules, repuration)
 - Operating system security (group policy chapter)
 - Implementation of secure protocols (protocol selection, port selection, transport met-hod)
 - Email security (domain-based message authentication reporting and conformance (dmarc), Domain Keys Identified Mail (dkim), Sender Policy Framework (SPF), gateway)

4) SECURING YOUR NETWORK

- 1. Exploring advanced security devices
 - 1.1. Understanding idss and ipss
 - 1.1.1.HIDS
 - 1.1.2.NIDS
 - 1.1.3.Sensor and collector placement
 - 1.1.4.Detection methods
 - 1.1.5. Data sources and trends
 - 1.1.6.Reporting based on rules
 - 1.1.7. Alert response and validation
 - 1.2. IPS versus IDS in line versus passive
 - 1.3. Honeypots
 - 1.4. Honeynets
 - 1.5. Honeyfile
 - 1.6. Honeytokens
- 2. Securing wireless networks
 - 2.1. Reviewing wireless basics
 - 2.1.1.Band selection and channel overlaps
 - 2.1.2.MAC filtering
 - 2.2. Site surveys and heat maps
 - 2.3. Access point installation considerations
 - 2.4. Wireless cryptographic protocols

- 2.4.1.WAP2 and CCMP
- 2.4.2.Open, psk, and enterprise modes
- 2.4.3.WPA3 and simultaneous authentication of equals
- 2.5. Authentication protocols
- 2.6. IEEE 802.1x security
- 2.7. Controller and access point security
- 2.8. Captive portals
- 3. Understanding wireless attacks
 - 3.1. Disassociation attacks
 - 3.2. Wi-fi protected setup
 - 3.3. Rogue access point
 - 3.4. Evil twin
 - 3.5. Jamming attacks
 - 3.6. IV attacks
 - 3.7. Near field communication attacks
 - 3.8. RFID attacks
 - 3.8.1.Wireless replay attacks
 - 3.8.2. War driving and war flying
- 4. Using VPNs for remote access
 - 4.1. VPNs and VPN concentrators
 - 4.2. Remote access VPN
 - 4.3. IPSEC as a tunneling protocol
 - 4.4. SSL/TLS as a tunneling protocol
 - 4.5. Split tunnel versus full tunnel
 - 4.6. Site-to-site VPNs
 - 4.7. Always-on SPN
 - 4.8. L2TP as a tunneling protocol
 - 4.9. HTML5 VPN portal
- 5. Network access control
 - 5.1. Host health checks
 - 5.2. Agent versus agentless NAC
- 6. Authentication and authorization methods
 - 6.1. PAP
 - 6.2. CHAP

- 6.3. RADIUS
- 6.4. TACACS+
- 6.5. AAA protocols

- 1.2 Summarize fundamental security concepts
 - Deception and disruption technology (honeypot, honeynet, honeyfile, honeytoken)
- 2.3 Explain various types of vulnerabilities
 - Zero-day
- 2.4 Given a scenario, analyze indicators of malicious activity
 - Physical attacks (radio frequency identification (RFID) cloning)
 - Network attacks (wireless)
- 3.2 Given a scenario, apply security principles to secure enterprise infrastructure
 - Device attribute (active vs. Passive, inline vs. Tap/monitor)
 - Intrusion prevention system (IPD)/ intrusion detection system (IDS)
 - Sensors
 - Port security (802.1 x , extensible authentication protocol (EAP))
 - Secure communication/access (virtual private network (VPN), remote access chapter, Tunneling (IPSEC)
- 4.0 given a scenario, apply common security techniques to computing resources
 - Wireless device (installation consideration: site surveys, heat maps)
 - Wireless security settings (WI-FI protected access 3 (WPA3), AAA/remote authentication dial-in user service (RADIUS), cryptographic protocols, authentication protocols)
- 4.4 Explain security alerting and monitoring concepts and tools
 - Agent / agentless
 - Alerting response and remediation / validation (quarantine)
- 4.5 Given a scenario, modify enterprise capabilities to enhance security
 - IDS/IPS (trends, signature)
 - Network Access Control (NAC)
 - 5) SECURING HOSTS AND DATA
- 1. Virtualization

- 1.1. Thin clients and virtual desktop infrastructure
- 1.2. Containerization
- 1.3. VM escape protection
- 1.4. VM sprawl avoidance
- 1.5. Resource reuse
- 1.6. Replication
- 1.7. Snapshots
- 2. Implementing secure system
 - 2.1. Endpoint security software
 - 2.2. Hardening workstations and servers
 - 2.3. Configuration enforcement
 - 2.4. Secure baseline and integrity measurements
 - 2.5. Using master images for baseline configurations
 - 2.6. Patching and patch management
 - 2.7. Change management
 - 2.8. Application allow and block lists
 - 2.9. Disk encryption
 - 2.10. Boot integrity
 - 2.10.1. Boot security and uefi
 - 2.10.2. Trusted platform module
 - 2.10.3. Hardware security module
 - 2.11. Decommissioning and disposal
- 3. Protecting data
 - 3.1. Data loss prevention
 - 3.2. Removable media
 - 3.3. Protecting confidentiality with encryption
 - 3.4. Database security
 - 3.5. Protecting data in use
- 4. Summarizing cloud concepts
 - 4.1. Cloud delivery models
 - 4.1.1.Software as a service
 - 4.1.2.Platform as a service
 - 4.1.3. Infrastructure as a service
 - 4.2. Cloud deployment models

- 4.2.1.Multi-cloud systems
- 4.3. Application programming interfaces
- 4.4. Microservices and apis
- 4.5. Managed security service provider
- 4.6. Cloud service provider responsabilities
- 4.7. Cloud security considerations
- 4.8. On-premises versus off-premises
 - 4.8.1.On-premises
 - 4.8.2.Off-premises
- 4.9. Hardening cloud enviroments
 - 4.9.1.Clooud access security broker
 - 4.9.2.Cloud-based dlp
 - 4.9.3.Next-generation secure web gateway
 - 4.9.4.Cloud firewall considerations
 - 4.9.5.Infrastructure as code
 - 4.9.6.Software-defined networking
 - 4.9.7.Edge and fog computing
- 4.10. Deploying mobile devices securely
 - 4.10.1. Mobile device deployment models
 - 4.10.2. Connection methods and receivers
 - 4.10.2.1. Mobile device management
 - 4.10.3. Hardening mobile devices
 - 4.10.3.1. Unauthorized software
 - 4.10.3.2. Hardware control
 - 4.10.3.3. Unauthorized connections
- 4.11. Exploring embedded systems
 - 4.11.1. Understanding internet of things
 - 4.11.2. Ics and scada systems
 - 4.11.3. Embedded systems components
 - 4.11.4. Hardening specialized systems
 - 4.11.5. Embedded system constraints

- 1.3 Explain the importance of using appropriate cryptographic solutions
 - Encryption (level: full-disk, partition, file, volume, database, record)
 - TPM (trusted platform module)
 - HSM (hardware security module)
 - Key Management System
 - Secure enclave

2.3 Explain various types of vulnerabilities

- Operating systems (os)-based
- Hardware (firmware, end-of-life, legacy)
- Virtualization (Virtual Machine (VM) escape, resource reuse)
- Cloud-specific
- Misconfiguration
- Mobile device (side loading, jailbreaking)
- 2.5 Explain the purpose of mitigation techniques used to secure the enterprise
 - Segmentation
 - Application allow list
 - Patching
 - Encryption
 - Configuration enforcement
 - Decommissioning
 - Hardening techniques (encryption, installation of endpoint protection, host-based intrusion prevention system (hips), disabling ports/protocols, default password, removal of unnecessary software)

3.1 Compare and contrast security implications of different architecture models

- Cloud (responsibility matrix, hybrid considerations, third-party vendors)
- Infrastructure As Code (IAC)
- Serverless
- Microservices
- Network infrastructure (Software-Defined Networking (SDN))
- On-premises
- Centralized vs. Decentralized
- Containerization
- Virtualization

- IoT (Internet of things)
- Industrial Control Systems (ICS) / Supervisory Control And Data Acquisition (SCADA)
- Real-Time Operating System (RTOS)
- Embedded systems
- Considerations (availability, resilience, cost, responsiveness, scalability, ease of deployment, risk transference, ease of recovery, patch availability, inability to patch, power, compute
- 3.3 Compare and contrast concepts and strategies to protect data
 - Geolocation
- 4.1 Given a scenario, apply common security techniques to computing resources
 - Secure baselines (establish, deploy, maintain)
 - Hardening targets (mobile devices, workstation, cloud infrastructure, servers, ICS/SCADA, embedded systems, RTOS, IoT)
 - Mobile solutions (Mobile Device Management (MDM); deployment models: Bring Your Own Device (BYOD), Corporate Owned, Personally Enabled (COPE), Choose Your Own Device (CYOD); connection methods: cellular, wi-fi, bluetooth)
- 4.4 Explain security alerting and monitoring concept and tools
 - Antivirus
 - DLP (Data Loss Prevention)
- 4.5 Given a scenario, modify enteprise capabilities to enhance security
 - DLP
 - Endpoint Detection and Response (EDR)
 - eXtended Detection and Response (XDR)

6) COMPARING THREATS, VULNERABILITIES AND COMMON ATTACKS

- 1. Understanding threat actors
 - 1.1. Threat actor types
 - 1.2. Attacker attributes
 - 1.3. Threat actor motivations
 - 1.4. Threat vectors and attack surfaces
 - 1.5. Shadow it
- 2. Determining malware types
 - 2.1. Viruses
 - 2.2. Worms

- 2.3. Logic bombs
- 2.4. Trojans
- 2.5. Remote access trojan
- 2.6. Keyloggers
- 2.7. Spyware
- 2.8. Rootkit
- 2.9. Ransomware
- 2.10. Bloatware
- 2.11. Potential indicators of a malware attack
- 3. Recognizing common attacks
 - 3.1. Social engineering and human vectors
 - 3.1.1.Impersonation
 - 3.1.2.Shoulder surfing
 - 3.1.3. Disinformation
 - 3.1.4. Tailgating and access control vestibules
 - 3.1.5. Dumpster diving
 - 3.1.6. Watering hole attacks
 - 3.1.7. Business email compromise
 - 3.1.8.Typosquatting
 - 3.1.9.Brand impersonation
 - 3.1.10. Eliciting information
 - 3.1.11. Pretexting
 - 3.2. Message-based attacks
 - 3.2.1.Spam
 - 3.2.2.Spam over instant messaging
 - 3.2.3.Phishing
 - 3.2.4.Whaling
 - 3.2.5.Vishing
 - 3.2.6.Smishing
 - 3.3. One click lets them in
- 4. Blocking malware and other attacks
 - 4.1. Spam filters
 - 4.2. Antivirus and anti-malware software
 - 4.2.1.Signature-based detection

- 4.2.2.Heuristic-based detection
- 4.2.3. File integrity monitors
- 4.3. Why social engineering works
 - 4.3.1.Authority
 - 4.3.2.Intimidation
 - 4.3.3.Consensus
 - 4.3.4.Scarcity
 - 4.3.5.Urgency
 - 4.3.6.Familiarity
 - 4.3.7.Trust
- 4.4. Threat intelligence sources
- 4.5. Research sources

2.0 Compare and contrast common threat actors and motivations

- Threat actors (nation-state, unskilled attacker, hacktivist, insider threat, organized crime, shadow it)
- Attributes of actors (internal/external, resources/funding, level of sophistication/capability)
- Motivations (data exfiltration, espionage, service disruption, blackmail, financial gain, philosophical/political beliefs, ethical revenge, disruption/chaos, war)
- 2.2 Explain common threat vectors and attack surfaces
 - Message-based (email, short message service (SMS), instant messaging (IM))
 - Image-based
 - File-based
 - Voice call
 - Removable device
 - Vulnerable software (client-based vs. Agentless)
 - Unsupported systems and applications
 - Unsecure networks (wireless, wired, bluetooth)
 - Open service ports
 - Default credentials
 - Supply chain (Managed Service Providers (MSP), vendors, suppliers)

- Human vectors/social engineering (phishing, vishing, smishing, misinformation/disinformation, impersonation, business email compromise, pretexting: watering hole, brand impersonation, typosquatting)
- 2.4 Given a scenario, analyze indicators of malicious activity
 - Malware attacks (ransomware, trojan, worm, spyware, bloatware, virus, keylogger, logic bomb, rootkit)
 - Malicious code
- 4.2 Explain various activities associated with vulnerability management
 - Threat feed (Open Source INTelligence OSINT, proprietary/third-party, information-sharing organization, dark web)
- 4.5 Given a scenario, modify enterprise capabilities to enhance security
 - File integrity monitoring

7) PROTECTING AGAINST ADVANCED ATTACKS

- 1. Identifying network attacks
 - 1.1. Denial of Service attacks
 - 1.1.1.Syn flood attacks
 - 1.2. Forgery
 - 1.3. On-path attacks
 - 1.4. Secure Sockets Layer stripping
 - 1.5. DNS attacks
 - 1.5.1.DNS poisoning attacks
 - 1.5.2.Pharming attacks
 - 1.5.3.Url redirection
 - 1.5.4. Domain hijacking
 - 1.5.5.DNS filtering
 - 1.5.6.DNS log files
 - 1.6. Replay attacks
- 2. Summarizing secure coding concepts
 - 2.1. Input validation
 - 2.1.1.Client-side and server-side input validation
 - 2.1.2. Other input validation techniques

- 2.2. Avoiding race conditions
- 2.3. Proper error handling
- 2.4. Code obfuscation
- 2.5. Software diversity
 - 2.5.1.Outsourced code development
 - 2.5.2.Data exposure
 - 2.5.3.HTTP headers
 - 2.5.4.Secure cookie
 - 2.5.5.Code signing
- 2.6. Analyzing and reviewing code
- 2.7. Software version control
- 2.8. Secure development enviroment
- 2.9. Database concepts
 - 2.9.1.SQL queries
- 2.10. Web server logs
- 3. Other application attacks
 - 3.1. Memory vulnerabilities
 - 3.1.1.Memory leak
 - 3.1.2. Buffer overflows and buffer attacks
 - 3.1.3.Integer overflow
 - 3.2. Other injection attacks
 - 3.2.1.DLL injection
 - 3.2.2.LDAP injection
 - 3.2.3.XML injection
 - 3.3. Directory traversal
 - 3.4. Cross-site scripting
- 4. Automation and orchestration for secure operations
 - 4.1. Automation and scripting use cases
 - 4.2. Benefits of autmations and scripting

2.3 Explain various types of vulnerabilities

- Application (memory injection, buffer overflow, race conditions: Time-Of-Check (TOC), Time-Of-Use(TOU))
- Malicious update
- Web based (SQL injection, XSS)

2.4 Given a scenario, analyze indicators of malicious activity

- Network attack (distributed denial of service (DDoS): amplified, reflected; domain name system attack; on-path; credential replay)
- Application attack (injection, buffer overflow, replay, forgery, directory traversal)
- 4.1 Given a scenario, apply common security techniques to computing resources
 - Application security (input validation, secure cookies, static code analysis, code signing)
 - Sandboxing
- 4.7 Explain the importance of automation and orchestration related to secure operations
 - Use cases of automation and scripting (user provisioning, resource provisioning, guard rails, security groups, ticket creation, escalation, enabling/disabling services and access, continuous integration and testing, integrations and application programming interfaces (API s))
 - Benefits (efficiency/time saving, enforcing baselines, standard infrastructure configurations, scaling in a secure manner, employee retention, reaction time, workforce multiplier)
 - Other considerations (complexity, cost, single point of failure, technical debt, ongoing supportability)

8) USING RISK MANAGEMENT TOOLS

- 1. Understanding risk management
 - 1.1. Threats
 - 1.2. Risk identification
 - 1.3. Risk types
 - 1.4. Vulnerabilities
 - 1.5. Risk managemnt strategies
 - 1.5.1.Risk assessment types
 - 1.5.2.Risk analysis
 - 1.5.3.Supply
 - 1.5.4.Chain risks
- 2. Comparing scanning and testing tools
 - 2.1. Checking for vulnerabilities

- 2.1.1.Network scanners
- 2.1.2. Vulnerability scanning
- 2.1.3.Credentialed vs. Non-credentialed scans
- 2.1.4. Configuration review
- 2.2. Penetration testing
 - 2.2.1. Rules of engagement
 - 2.2.2.Reconnaissance
 - 2.2.3.Footprinting versus fingerprinting
 - 2.2.4. Initial exploitation
 - 2.2.5.Persistence
 - 2.2.6.Lateral movement
 - 2.2.7. Privilege escalation
 - 2.2.8.Pivoting
 - 2.2.9.Known, unknown and partially known testing enviroments
 - 2.2.10. Cleanup
- 2.3. Responsible disclosure programs
- 2.4. System and process audits
- 2.5. Intrusive versus non-intrusive testing
- 2.6. Responding to vulnerabilities
 - 2.6.1.Remediating vulnerabilities
 - 2.6.2. Validation of remediation
- 3. Capturing network traffic
 - 3.1.1.Packet capture and replay
 - 3.2. TCPreplay and TCPdump
 - 3.3. Netflow
- 4. Understanding frameworks and standards
 - 4.1. ISO standards
 - 4.2. Industry-specific frameworks
 - 4.3. NIST frameworks
 - 4.3.1.NIST risk management framework
 - 4.3.2.NIST cybersecurity framework
 - 4.4. Reference architecture
 - 4.5. Benchmarks and configuration guides
- 5. Audits and assessments

- 1.2 Summarize fundamental security concepts
 - Gap analysis
- 2.3 Explain various type of vulnerabilities
 - Supply chain (service provider, hardware provider, software provider)
- 4.3 Eplain various activities associated with vulnerability management
 - Vulnerability scan
 - Penetration testing
 - Responsible disclosure program
 - Bug bounty program
 - System/process audit
 - Analysis (confirmation, false positive, false negative, prioritize, Common Vulnerability Scoring System (CVSS), Common Vulnerability Enumeration (CVE), vulnerability classification, Exposure Factor, environmental variables, industry/organizational impact, risk tolerance)
 - Vulnerability response and remediation (patching, insurance, segmentation, compensating controls, exceptions and exemptions)
 - Validation of remediation (rescanning, audit, verification)
 - Reporting

4.4 Explain security alerting and monitoring concepts and tools

- Security Content Automation Protocol (SCAP)
- Benchmarks
- Netflow
- Vulnerability scanners

5.2 Explain elements of the risk management process

- Risk identification
- Risk assessment (ad hoc, recurring, one-time, continuous)
- Risk analysis (qualitative; quantitative; Single Loss Expectancy (SLE); Annualized Loss
 Expectancy (ALE); Annualized Rate of Occurrence (ARO); probability; likelihood; Exposure
 Factor; impact; risk register: key risk indicators, risk owners, risk threshold; risk tolerance;
 risk appetite: expansionary, conservative, neutral; risk management strategies: transfer,
 accept exemption, accept exception, avoid, mitigate)
- Risk reporting

- 5.5 Explain types and purposes of audits and assessments
 - Attestation
 - Internal (compliance, audit committee, self-assessments)
 - External (regulatory, examinations, assessment, independent third-party audit)
 - Penetration testing (physical, offensive, defensive, integrated, known environment, partially known environment, unknown environment)
 - Reconnaissance (passive, active)

9) IMPLEMENTING CONTROLS TO PROTECT ASSETS

- 1. Comparing physical security controls
 - 1.1. Access badges
 - 1.2. Increasing security with personnel
 - 1.3. Monitoring areas with video surveillance
 - 1.4. Sensors
 - 1.5. Fencing, lighting and alarms
 - 1.6. Securing access with barricades
 - 1.7. Access control vestibules
 - 1.8. Asset management
 - 1.8.1.Hardware asset management
 - 1.8.2.Software asset management
 - 1.8.3.Data asset management
 - 1.9. Platform diversity
 - 1.10. Physical attacks
 - 1.10.1. Card skimming and card cloning
 - 1.10.2. Brute force attacks
 - 1.10.3. Enviromental attacks
- 2. Adding redundancy and fault tolerance
 - 2.1. Single Point of Failure
 - 2.2. Disk redundancies
 - 2.2.1.Raid-0
 - 2.2.2.Raid-1
 - 2.2.3.Raid-5 and raid-6
 - 2.2.4.Raid-10
 - 2.3. Server redundancy and high availability

- 2.3.1.Active/ active load balancers
- 2.3.2.Active/ passive load balancers
- 2.4. NIC teaming
- 2.5. Power redundancies
- 3. Protecting data with backups
 - 3.1. Backup media
 - 3.2. Online versus offline backups
 - 3.2.1.Full backups
 - 3.2.2.Recovering a full backup
 - 3.2.3.Differential backups
 - 3.2.4.Order of recovery for a full/differential backup set
 - 3.2.5.Incremental backups
 - 3.2.6.Order of recovery for a full/differential backup set
 - 3.2.7. Snapshot and image backups
 - 3.2.8.Replication and journaling
 - 3.2.9. Backup frequency
 - 3.2.10. Testing backups
 - 3.3. Backup and geographic considerations
- 4. Comparing business continuity elemnts
 - 4.1. Business impact analysis concepts
 - 4.1.1.Site risk assessment
 - 4.1.2.Impact
 - 4.1.3. Recovery Time Objective
 - 4.1.4.Recovery Point Objective
 - 4.1.5.Comparing MTBF and MTTR
 - 4.2. Continuity of operations planning
 - 4.2.1.Site resiliency
 - 4.2.2.Restoration order
 - 4.3. Disaster recovery
 - 4.4. Testing plans with exercises
 - 4.4.1.Tabletop exercises
 - 4.4.2.Simulations
 - 4.4.3.Parallel processing
 - 4.4.4.Fail over tests

5. Capacity planning

Objective covered:

1.2 Summarize fundamental security concepts

- Physical security (bollards, access control vestibule, fencing, video surveillance, security guard, access badge, lighting, sensors: infrared, pressure, microwave, ultrasonic)
- Physical attack (brute force, environmental)
- 3.3 Compare and contrast concepts and strategies to protect data
 - General data considerations (data sovereignty)
- 3.4 Explain the importance of resilience and recovery in security architecture
 - High availability (load balancing vs. clustering)
 - Site considerations (hot, cold, warm, geographic dispersion)
 - Platform diversity
 - Continuity of operations
 - Capacity planning (people, technology, infrastructure)
 - Testing (tabletop exercises, fail over, simulation, parallel processing)
 - Backups (onsite/offsite, frequency, encryption, snapshots, recovery, replication, journaling)
 - Power (generators, uninterruptible power supply (ups))
- 4.2 Explain the security implications of proper hardware, software, and data asset management
 - Acquisition/procurement
 - Assignment/accounting (ownership, classification)
 - Monitoring/asset trasking (inventory / enumeration)
- 5.2 Explain elements of the risk management process
 - Recovery Time Objective (RTO)
 - Recovery Point Objective (RPO)
 - Mean Time To Repair (MTTR)
 - Mean Time Between Failures (MTBF)

10) UNDERSTANDING CRYPTOGRAPHY AND PKI

- 1. Introducing cryptography concepts
- 2. Providing integrity with hashing
 - 2.1. Hash versus checksum

- 2.2. MD5
- 2.3. Secure hash algorithms
- 2.4. Hmac
- 2.5. Hashing files
- 2.6. Hashing messages
- 2.7. Using hmac
- 2.8. Hashing passwords
- 2.9. Undertanding hash collisions
- 3. Understanding password attacks
 - 3.1. Dictionary attacks
 - 3.2. Brute force attacks
 - 3.3. Password spraying attacks
 - 3.3.1.Pass the hash attacks
 - 3.4. Birthday attacks
 - 3.5. Rainbow table attacks
 - 3.6. Salting passwords
 - 3.7. Key stretching
- 4. Providing confidentiality with encryption
 - 4.1. Symmetric encryption
 - 4.2. Block versus stream ciphers
 - 4.3. Common symmetric algorithms
 - 4.3.1.AES
 - 4.3.2.3DES
 - 4.3.3.Blowfish and twofish
 - 4.4. Asymmetric encryption
 - 4.4.1.Key exchange
 - 4.4.2.The reyburn box
 - 4.5. Certificates
 - 4.6. Ephemeral keys
 - 4.7. Elliptic curve cryptography
 - 4.8. Key lenght
 - 4.9. Obfuscation
 - 4.9.1.Steganography
 - 4.9.2.Tokenization

4.9.3. Masking

- 5. Using cryptographic protocols
 - 5.1. Protecting email
 - 5.1.1.Signing email with digital signatures
 - 5.1.2. Encrypting email
 - 5.1.3.S/mime
 - 5.2. HTTPS transport encryption
 - 5.2.1.TLS versus SSL
 - 5.2.2. Encrypting HTTPS traffic with TLS
 - 5.2.3. Downgrade attacks on weak implementations
 - 5.3. Blockchain
 - 5.4. Identifyng limitations
 - 5.4.1.Resource versus security constraints
 - 5.4.2.Speed and time
 - 5.4.3. Size and computational overhead
 - 5.4.4.Entropy
 - 5.4.5.Predictability
 - 5.4.6.Weak keys
 - 5.4.7.Reuse
 - 5.4.8.Plaintext attack
- 6. Exploring PKI components
 - 6.1. Certificate authority
 - 6.2. Certificate trust models
 - 6.3. Registration authority and CSRs
 - 6.4. Online versus offline CAs
 - 6.5. Updating and revoking certificates
 - 6.6. Certificate revocation list
 - 6.7. Validating a certificate
 - 6.8. Certificate pinning
 - 6.9. Key escrow
 - 6.10. Key management
 - 6.11. Comparing certificate types
 - 6.12. Comparing certificate formats

- 1.2 Summarize fundamental security concepts
 - Non-repudation
- 1.4 Explain the importance of using appropriate cryptography solutions
 - Public key infrastructure (PKI) (public key, private key, key escrow)
 - Encryption (transport/communication, asymmetric, symmetric, key exchange, algorithms, key length)
 - Obfuscation (steganography, tokenization, data masking)
 - Hashing
 - Salting
 - Digital signatures
 - Key stretching
 - Blockchain
 - Open public ledger
 - Certificates (Certificate Authorities, Certificate Revocation Lists (CRLs), Online Certificate Status Protocol (OCSP), self-signed, third-party, root of trust, Certificate Signing Request (CSR) generation, wildcard)
- 2.3 Explain various types of vulnerabilities
 - Cryptographic
 - Cryptographic attacks (downgrade, collision, birthday)
 - Password attacks (spraying, brute force)
- 3.3 Compare and contrast concepts and strategies to protect data
 - General data considerations (data states: at rest, in transit, in use)
 - Methods to secure data (encryption, hashing, masking, tokenization, obfuscation)

11) IMPLEMENTING POLICIES TO MITIGATE RISKS

- 1. Change management
 - 1.1. Business processes
 - 1.2. Technical implications
 - 1.3. Documentation and version control
- 2. Protecting data

- 2.1. Understanding data types
- 2.2. Classifying data types
- 2.3. Securing data
- 2.4. Data retention
- 2.5. Data sanitization
- 3. Incident response
 - 3.1. Incident response plan
 - 3.1.1.Communication plan
 - 3.2. Incident response process
 - 3.3. Incident response training and testing
 - 3.4. Threat hunting
 - 3.5. Understanding digital forensics
 - 3.5.1. Acquisition and preservation
 - 3.5.2.Legal holds and electronic discovery
 - 3.5.3. Admissibility of documentation and evidence
 - 3.5.4.Reporting
 - 3.6. Understanding SOAR
 - 3.6.1.Playbooks
 - 3.6.2.Runbooks
- 4. Security governance
 - 4.1. Governance structures
 - 4.2. External considerations
 - 4.3. Security policies
 - 4.4. Security standards
 - 4.5. Security procedures
 - 4.6. Security guidelines
 - 4.7. Data governance
 - 4.8. Data roles
 - 4.9. Monitoring and revision
- 5. Third-party risk management
 - 5.1. Supply chain and vendors
 - 5.2. Vendor assessment
 - 5.3. Vendor selection
 - 5.4. Vendor agreements

- 6. Security compliance
 - 6.1. Compliance monitoring and reporting
 - 6.2. Privacy
 - 6.3. Data inventory and retention
- 7. Security awareness
 - 7.1. Computer-based training
 - 7.2. Phishing campaigns
 - 7.3. Recognizing anomalous behavior
 - 7.4. User guidance and training
 - 7.5. Awareness program development and execution

1.3 Explain the importance of change management processes and the impact to security

- Business processes impacting security operation (approval process, ownership, stakeholders, impact analysis, test results, backout plan, maintenance window, standard operating procedure)
- Technical implications (allow lists/deny lists, restricted activities, downtime, service restart, application restart, legacy applications, dependencies)
- Documentation (updating diagrams, updating policies / procedures)
- Version control
- 3.3 Compare and contrast concepts and strategies to protect data
 - Data types (regulated, trade secret, intellectual property, legal information, financial information, human-and non-human-readable)
 - Data classifications (sensitive, confidential, public, restricted, private, critical)
- 4.2 explain the security implications of proper hardware, software, and data asset management
 - Disposal/decommissioning (sanitization, destruction, certification, data retention)
- 4.3 explain various activities associated with vulnerability management
 - Application security (static analysis, dynamic analysis, package monitoring)
- 4.8 Explain appropriate incident response activities
 - Process (preparation, detection, analysis, containment, eradication, recovery, lesson learned)
 - Training

- Testing (tabletop exercise, simulation)
- Root cause analysis
- Threat hunting
- Digital forensics (legal hold, chain of custody, acquisition, reporting, preservation, ediscovery)
- 5.1 summarize elements of effective security governance
 - Guidelines
 - Policies (Acceptable Use Policy (AUP), information security policies , business continuity , disaster recovery, incident response , Software Development Lifecycle (SDLC), change management)
 - Standards (password, access control, physical security, encryption)
 - Procedures (change management, onboarding/offboarding, playbooks)
 - External considerations (regulatory, legal, industry, local/regional, national, global)
 - Monitoring and revision
 - Types of governance structures (boards, committees, government entities, centralized/decentralized)
 - Roles and responsibilities for systems and data (owners, controllers, processors, custodians/stewards)
- 5.3 Explain the processes associated with third-party risk assessment and management
 - Vendor assessment (penetration testing, right-to-audit clause, evidence of internal audits, independent assessments, supply chain analysis)
 - Vendor selection (due diligence, conflict of interest)
 - Agreement types (Service-Level Agreement (SLA), Memorandum Of Agreement (MOA), Memorandum Of Understanding (MOU), Master Service Agreement (MSA), Work Order (WO)/Statement Of Work (SOW), Non-Disclosure Agreement (NDA), Business Partners Agreement (BPA)
 - Vendor monitoring
 - Questionnaires
 - Rules of engagement

5.4 Summarize elements of effective security compliance

- Compliance reporting (internal, external)
- Consequences of non-compliance (fines, sanctions, reputational damage, loss of license, contractual impacts)

- Compliance monitoring (due diligence/care, attestation and acknowledgement, internal and external, automation)
- Privacy (legal implications, local/regional, national, global)
- Data subject
- Controller vs. Processor
- Ownership
- Data inventory and retention
- Right to be forgotten
- 5.6 Given a scenario, implement security awareness practices
 - Phishing (campaigns, recognizing a phishing attempt, responding to reported suspicious messages)
 - Anomalous behavior recognition (risky, unexpected, unintentional)
 - User guidance and training (policy/handbooks, situational awareness, insider threat, password management, removable media and cables, social engineering, operational security, hybrid/remote work environment)
 - Reporting and monitoring (initial, recurring)
- Development and Execution

CORSO PENETRATION TEST E HACKING ETICO | CERTIFICATO COMPTIA PENTEST+

UNIT 1 – PLANNING AND SCOPING

MODULE 1 – COMPARE AND CONTRAST GOVERNANCE, RISK, AND COMPLIANCE CONCEPTS.

- Regulatory compliance considerations
 - Payment Card Industry Data Security Standard (PCI DSS)
 - General Data Protection Regulation (GDPR)
- Location restrictions
 - o Country limitations
 - o Tool restrictions
 - o Local laws
 - o Local government requirements
 - Privacy requirements
- Legal concepts
 - Service-level agreement (SLA)
 - o Confidentiality
 - $\circ \quad \text{Statement of work} \\$
 - Non-disclosure agreement (NDA)
 - Master service agreement
- Permission to attack

MODULE 2 – EXPLAIN THE IMPORTANCE OF SCOPING AND ORGANIZATIONAL/CUSTOMER REQUIREMENTS.

- Standards and methodologies
 - MITRE ATT&CK
 - Open Web Application Security Project (OWASP)
 - o National Institute of Standards and Technology (NIST)
 - o Open-source Security Testing Methodology Manual (OSSTMM)
 - Penetration Testing Execution Standard (PTES)
 - o Information Systems Security Assessment Framework (ISSAF)
- Rules of engagement
 - Time of day

- Types of allowed/disallowed tests
- Other restrictions
- Environmental considerations
 - o Network
 - \circ Application
 - \circ Cloud
- Target list/in-scope assets
 - Wireless networks
 - Internet Protocol (IP) ranges
 - o Domains
 - Application programming interfaces (APIs)
 - o Physical locations
 - Domain name system (DNS)
 - o External vs. internal targets
 - First-party vs. third-party hosted
- Validate scope of engagement
 - Question the client/review contracts
 - o Time management
 - o Strategy
 - o Unknown-environment vs. known-environment testing

MODULE 3 – GIVEN A SCENARIO, DEMONSTRATE AN ETHICAL HACKING MINDSET BY MAINTAINING PROFESSIONALISM AND INTEGRITY.

- Background checks of penetration testing team
- Adhere to specific scope of engagement
- Identify criminal activity
- Immediately report breaches/ criminal activity
- Limit the use of tools to a particular engagement
- Limit invasiveness based on scope
- Maintain confidentiality of data/information
- Risks to the professional
 - Fees/fines
 - o Criminal charges

UNIT 2 – INFORMATION GATHERING AND VULNERABILITY SCANNING

MODULE 1 - GIVEN A SCENARIO, PERFORM PASSIVE RECONNAISSANCE.

- DNS lookups
- Identify technical contacts
- Administrator contacts
- Cloud vs. self-hosted
- Social media scraping
 - Key contacts/job responsibilities
 - Job listing/technology stack
- Cryptographic flaws
 - Secure Sockets Layer (SSL) certificates
 - o Revocation
- Company reputation/security posture
- Data
- Password dumps
- File metadata
- Strategic search engine analysis/enumeration
 - Website archive/caching
 - Public source-code repositories
- Open-source intelligence (OSINT)
 - o Tools
 - Shodan
 - Recon-ng
 - Sources
 - Common weakness enumeration (CWE)
 - Common vulnerabilities and exposures (CVE)

MODULE 2 – GIVEN A SCENARIO, PERFORM ACTIVE RECONNAISSANCE.

- Enumeration
 - o Hosts
 - o Services
 - o Domains
 - o Users

- Uniform resource locators (URLs)
- Website reconnaissance
 - Crawling websites
 - o Scraping websites
 - o Manual inspection of web links
 - robots.txt

Packet crafting

• Scapy

Defense detection

- Load balancer detection
- Web application firewall (WAF) detection
- Antivirus
- Firewall

Tokens

- Scoping
- Issuing
- Revocation

Wardriving

Network traffic

- Capture API requests and responses
- Sniffing

Cloud asset discovery

Third-party hosted services

Detection avoidance

MODULE 3 – GIVEN A SCENARIO, ANALYZE THE RESULTS OF A RECONNAISSANCE EXERCISE.

- Fingerprinting
 - Operating systems (OSs)
 - o Networks
 - Network devices
 - \circ Software
- Analyze output from:
 - o DNS lookups
 - Crawling websites

IN-FORMAZIONE SRL - Via Riccardo Grazioli Lante, 9 - 00195 Roma P.IVA 07252070722 - Tel. : 0687153208 - info@musaformazione.it

- o Network traffic
- Address Resolution Protocol (ARP) traffic
- o Nmap scans
- Web logs

MODULE 4 - GIVEN A SCENARIO, PERFORM VULNERABILITY SCANNING.

- Considerations of vulnerability scanning
 - Time to run scans
 - o Protocols
 - Network topology
 - o Bandwidth limitations
 - Query throttling
 - Fragile systems
 - o Non-traditional assets
- Scan identified targets for vulnerabilities
- Set scan settings to avoid detection
- Scanning methods
 - o Stealth scan
 - Transmission Control Protocol (TCP) connect scan
 - Credentialed vs. non-credentialed
- Nmap
 - Nmap Scripting Engine (NSE) scripts
 - Common options
 - A
 - sV
 - sT
 - Pn
 - 0
 - sU
 - sS
 - T 1-5
 - script=vuln
 - p

Vulnerability testing tools that facilitate automation

UNIT 3 – ATTACKS AND EXPLOITS

MODULE 1 - GIVEN A SCENARIO, RESEARCH ATTACK VECTORS AND PERFORM NETWORK

ATTACKS.

- Stress testing for availability
- Exploit resources
 - Exploit database (DB)
 - Packet storm
- Attacks
 - o ARP poisoning
 - Exploit chaining
 - Password attacks
 - Password spraying
 - Hash cracking
 - Brute force
 - Dictionary
 - On-path (previously known as man-in-the-middle)
 - Kerberoasting
 - DNS cache poisoning
 - Virtual local area network (VLAN) hopping
 - Network access control (NAC) bypass
 - Media access control (MAC) spoofing
 - Link-Local Multicast Name Resolution (LLMNR)/NetBIOS- Name Service (NBT-NS) poisoning
 - New Technology LAN Manager (NTLM) relay attacks

Tools

- Metasploit
- Netcat
- Nmap

MODULE 2 – GIVEN A SCENARIO, RESEARCH ATTACK VECTORS AND PERFORM WIRELESS ATTACKS.

- Attack methods
 - Eavesdropping
 - o Data modification

- o Data corruption
- o Relay attacks
- o Spoofing
- Deauthentication
- o Jamming
- o Capture handshakes
- o On-path
- Attacks
 - o Evil twin
 - o Captive portal
 - o Bluejacking
 - Bluesnarfing
 - o Radio-frequency identification (RFID) cloning
 - Bluetooth Low Energy (BLE) attack
 - o Amplification attacks [Near-field communication (NFC)]
 - WiFi protected setup (WPS) PIN attack
- Tools
 - Aircrack-ng suite
 - o Amplified antenna

MODULE 3 – GIVEN A SCENARIO, RESEARCH ATTACK VECTORS AND PERFORM APPLICATION-BASED ATTACKS.

- OWASP Top 10
- Server-side request forgery
- Business logic flaws
- Injection attacks
 - Structured Query Language (SQL) injection
 - Blind SQL
 - Boolean SQL
 - Stacked queries
 - Command injection
 - Cross-site scripting
 - Persistent
 - Reflected

• Lightweight Directory Access Protocol (LDAP) injection

Application vulnerabilities

- Race conditions
- Lack of error handling
- Lack of code signing
- Insecure data transmission
- Session attacks
 - Session hijacking
 - Cross-site request forgery (CSRF)
 - Privilege escalation
 - Session replay
 - Session fixation

API attacks

- Restful
- Extensible Markup Language- Remote Procedure Call (XML-RPC)
- Soap

Directory traversal

Tools

- Web proxies
 - OWASP Zed Attack Proxy (ZAP)
 - Burp Suite community edition
- SQLmap
- DirBuster

Resources

• Word lists

MODULE 4 – GIVEN A SCENARIO, RESEARCH ATTACK VECTORS AND PERFORM ATTACKS ON CLOUD TECHNOLOGIES.

- Attacks
 - o Credential harvesting
 - Privilege escalation
 - o Account takeover
 - Metadata service attack
 - Misconfigured cloud assets

IN-FORMAZIONE SRL - Via Riccardo Grazioli Lante, 9 - 00195 Roma P.IVA 07252070722 - Tel. : 0687153208 - info@musaformazione.it

- Identity and access management (IAM)
- Federation misconfigurations
- Object storage
- Containerization technologies
- Resource exhaustion
- Cloud malware injection attacks
- Denial-of-service attacks
- Side-channel attacks
- Direct-to-origin attacks

Tools

• Software development kit (SDK)

MODULE 5 – EXPLAIN COMMON ATTACKS AND VULNERABILITIES AGAINST SPECIALIZED SYSTEMS.

- Mobile
 - o Attacks
 - Reverse engineering
 - Sandbox analysis
 - Spamming
 - Vulnerabilities
 - Insecure storage
 - Passcode vulnerabilities
 - Certificate pinning
 - Using known vulnerable components (i) Dependency vulnerabilities (ii) Patching fragmentation
 - Execution of activities using root
 - Over-reach of permissions
 - Biometrics integrations
 - Business logic vulnerabilities
 - Tools
 - Burp Suite
 - Drozer
 - Mobile Security Framework (MobSF)
 - Postman

- Ettercap
- Frida
- Objection
- Android SDK tools
- ApkX
- APK Studio

Internet of Things (IoT) devices

- BLE attacks
- Special considerations
 - Fragile environment
 - Availability concerns
 - Data corruption
 - Data exfiltration
- Vulnerabilities
 - Insecure defaults
 - Cleartext communication
 - Hard-coded configurations
 - Outdated firmware/hardware
 - Data leakage
 - Use of insecure or outdated components

Data storage system vulnerabilities

- Misconfigurations—on-premises and cloud-based
 - Default/blank username/password
 - Network exposure
- Lack of user input sanitization
- Underlying software vulnerabilities
- Error messages and debug handling
- Injection vulnerabilities
 - Single quote method

Management interface vulnerabilities

Intelligent platform management interface (IPMI)

Vulnerabilities related to supervisory control and data acquisition (SCADA)/ Industrial Internet of Things

(IIoT)/ industrial control system (ICS)

Vulnerabilities related to virtual environments

- Virtual machine (VM) escape
- Hypervisor vulnerabilities
- VM repository vulnerabilities

Vulnerabilities related to containerized workloads

MODULE 6 - GIVEN A SCENARIO, PERFORM A SOCIAL ENGINEERING OR PHYSICAL ATTACK.

- Pretext for an approach
- Social engineering attacks
 - o Email phishing
 - Whaling
 - Spear phishing
 - Vishing
 - Short message service (SMS) phishing
 - Universal Serial Bus (USB) drop key
 - Watering hole attack

Physical attacks

- Tailgating
- Dumpster diving
- Shoulder surfing
- Badge cloning

Impersonation

Tools

- Browser exploitation framework (BeEF)
- Social engineering toolkit
- Call spoofing tools

Methods of influence

- Authority
- Scarcity
- Social proof
- Urgency
- Likeness
- Fear

MODULE 7 - GIVEN A SCENARIO, PERFORM POST-EXPLOITATION TECHNIQUES.

- Post-exploitation tools
 - o Empire
 - o Mimikatz
 - o BloodHound
- Lateral movement
 - Pass the hash
- Network segmentation testing
- Privilege escalation
 - Horizontal
 - Vertical
- Upgrading a restrictive shell
- Creating a foothold/persistence
 - o **Trojan**
 - o Backdoor
 - Bind shell
 - Reverse shell
 - Daemons
 - Scheduled tasks

Detection avoidance

- Living-off-the-land techniques/fileless malware
 - PsExec
 - Windows Management Instrumentation (WMI)
 - PowerShell (PS) remoting/Windows Remote Management (WinRM)
- Data exfiltration
- Covering your tracks
- Steganography
- Establishing a covert channel

Enumeration

- Users
- Groups
- Forests
- Sensitive data
- Unencrypted files

UNIT 4 – REPORTING AND COMMUNICATION

MODULE 1 - COMPARE AND CONTRAST IMPORTANT COMPONENTS OF WRITTEN REPORTS.

- Report audience
 - \circ C-suite
 - o Third-party stakeholders
 - o Technical staff
 - o Developers
- Report contents (** not in a particular order)
 - Executive summary
 - o Scope details
 - Methodology
 - Attack narrative
 - Findings
 - Risk rating (reference framework)
 - Risk prioritization
 - Business impact analysis
 - Metrics and measures
 - Remediation
 - Conclusion
 - Appendix

Storage time for report

Secure distribution

Note taking

- Ongoing documentation during test
- Screenshots

Common themes/root causes

- Vulnerabilities
- Observations
- Lack of best practices

MODULE 2 - GIVEN A SCENARIO, ANALYZE THE FINDINGS AND RECOMMEND THE

APPROPRIATE REMEDIATION WITHIN A REPORT.

• Technical controls

- o System hardening
- Sanitize user input/parameterize queries
- Implemented multifactor authentication
- Encrypt passwords
- Process-level remediation
- o Patch management
- o Key rotation
- Certificate management
- Secrets management solution
- Network segmentation
- Administrative controls
 - Role-based access control
 - o Secure software development life cycle
 - o Minimum password requirements
 - Policies and procedures
- Operational controls
 - Job rotation
 - Time-of-day restrictions
 - o Mandatory vacations
 - User training
- Physical controls
 - Access control vestibule
 - Biometric controls
 - Video surveillance

MODULE 3 – EXPLAIN THE IMPORTANCE OF COMMUNICATION DURING THE PENETRATION TESTING PROCESS.

- Communication path
 - o Primary contact
 - o Technical contact
 - Emergency contact
- Communication triggers
 - o Critical findings
 - o Status reports

IN-FORMAZIONE SRL - Via Riccardo Grazioli Lante, 9 - 00195 Roma P.IVA 07252070722 - Tel. : 0687153208 - info@musaformazione.it

- o Indicators of prior compromise
- Reasons for communication
 - Situational awareness
 - De-escalation
 - \circ Deconfliction
 - Identifying false positives
 - o Criminal activity
- Goal reprioritization
- Presentation of findings

MODULE 4 – EXPLAIN POST-REPORT DELIVERY ACTIVITIES.

- Post-engagement cleanup
 - o Removing shells
 - o Removing tester-created credentials
 - Removing tools
- Client acceptance
- Lessons learned
- Follow-up actions/retest
- Attestation of findings Data destruction process

UNIT 5 – EXPLAIN USE CASES OF THE FOLLOWING TOOLS DURING THE PHASES OF A PENETRATION TEST.

- Scanners
 - o Nikto
 - Open vulnerability assessment scanner (Open VAS)
 - o SQLmap
 - o Nessus
 - o Open Security Content Automation Protocol (SCAP)
 - o Wapiti
 - o WPScan
 - o Brakeman
 - o Scout Suite
- Credential testing tools
 - o Hashcat

- o Medusa
- o Hydra
- o CeWL
- \circ John the Ripper
- \circ Cain
- o Mimikatz
- o Patator
- o DirBuster
- Debuggers
 - o OllyDbg
 - Immunity Debugger
 - GNU Debugger (GDB)
 - o WinDbg
 - Interactive Disassembler (IDA)
 - o Covenant
 - SearchSploit
- OSINT
 - o WHOIS
 - o Nslookup
 - Fingerprinting Organization with Collected Archives (FOCA)
 - o theHarvester
 - o Shodan
 - Maltego
 - o Recon-ng
 - o Censys
- Wireless
 - Aircrack-ng suite
 - o Kismet
 - \circ Wifite2
 - o Rogue access point
 - o EAPHammer
 - o mdk4
 - o Spooftooph
 - o Reaver

- Wireless Geographic Logging Engine (WiGLE)
- o Fern
- Web application tools
 - OWASP ZAP
 - $\circ \quad \text{Burp Suite} \quad$
 - o Gobuster
 - o w3af
- Social engineering tools
 - Social Engineering Toolkit (SET)
 - o BeEF
- Remote access tools
 - Secure Shell (SSH)
 - o Ncat
 - o Netcat
 - ProxyChains
- Networking tools
 - o Wireshark
 - o Hping
- Misc.
 - o SearchSploit
 - o Responder
 - o Impacket tools
 - Empire
 - o Metasploit
 - o mitm6
 - CrackMapExec
 - o TruffleHog
 - o Censys
- Steganography tools
 - o Openstego
 - o Steghide
 - \circ Snow
 - o Coagula
 - o Sonic Visualiser

IN-FORMAZIONE SRL - Via Riccardo Grazioli Lante, 9 - 00195 Roma P.IVA 07252070722 - Tel. : 0687153208 - info@musaformazione.it

- o TinEye
- Cloud tools
 - o Scout Suite
 - CloudBrute
 - o Pacu
 - $\circ \quad \text{Cloud Custodian} \\$

