

Corso Penetration Test e Hacking Etico + Laboratori Pratici

UNIT 1 - PLANNING AND SCOPING

MODULE 1 - COMPARE AND CONTRAST GOVERNANCE, RISK, AND COMPLIANCE CONCEPTS.

- Regulatory compliance considerations
 - o Payment Card Industry Data Security Standard (PCI DSS)
 - o General Data Protection Regulation (GDPR)
- Location restrictions
 - Country limitations
 - Tool restrictions
 - Local laws
 - Local government requirements
 - Privacy requirements
- Legal concepts
 - Service-level agreement (SLA)
 - Confidentiality
 - o Statement of work
 - Non-disclosure agreement (NDA)
 - Master service agreement
- Permission to attack

MODULE 2 – EXPLAIN THE IMPORTANCE OF SCOPING AND ORGANIZATIONAL/CUSTOMER REQUIREMENTS.

- Standards and methodologies
 - MITRE ATT&CK
 - o Open Web Application Security Project (OWASP)
 - National Institute of Standards and Technology (NIST)
 - Open-source Security Testing Methodology Manual (OSSTMM)
 - Penetration Testing Execution Standard (PTES)
 - Information Systems Security Assessment Framework (ISSAF)
- Rules of engagement
 - o Time of day
 - Types of allowed/disallowed tests
 - o Other restrictions
- Environmental considerations
 - Network
 - Application

- o Cloud
- Target list/in-scope assets
 - o Wireless networks
 - o Internet Protocol (IP) ranges
 - Domains
 - Application programming interfaces (APIs)
 - Physical locations
 - Domain name system (DNS)
 - o External vs. internal targets
 - First-party vs. third-party hosted
- Validate scope of engagement
 - o Question the client/review contracts
 - o Time management
 - Strategy
 - Unknown-environment vs. known-environment testing

MODULE 3 – GIVEN A SCENARIO, DEMONSTRATE AN ETHICAL HACKING MINDSET BY MAINTAINING PROFESSIONALISM AND INTEGRITY.

- Background checks of penetration testing team
- Adhere to specific scope of engagement
- Identify criminal activity
- Immediately report breaches/ criminal activity
- Limit the use of tools to a particular engagement
- Limit invasiveness based on scope
- Maintain confidentiality of data/information
- Risks to the professional
 - o Fees/fines
 - Criminal charges

UNIT 2 – INFORMATION GATHERING AND VULNERABILITY SCANNING

MODULE 1 – GIVEN A SCENARIO, PERFORM PASSIVE RECONNAISSANCE.

- DNS lookups
- Identify technical contacts
- Administrator contacts
- Cloud vs. self-hosted
- Social media scraping
 - Key contacts/job responsibilities
 - Job listing/technology stack
- Cryptographic flaws
 - Secure Sockets Layer (SSL) certificates
 - Revocation
- Company reputation/security posture
- Data
- Password dumps
- File metadata
- Strategic search engine analysis/enumeration
 - o Website archive/caching

- Public source-code repositories
- Open-source intelligence (OSINT)
 - o Tools
 - Shodan
 - Recon-ng
 - Sources
 - Common weakness enumeration (CWE)
 - Common vulnerabilities and exposures (CVE)

MODULE 2 - GIVEN A SCENARIO, PERFORM ACTIVE RECONNAISSANCE.

- Enumeration
 - o Hosts
 - Services
 - o Domains
 - Users
 - Uniform resource locators (URLs)
- Website reconnaissance
 - Crawling websites
 - Scraping websites
 - o Manual inspection of web links
 - robots.txt
- Packet crafting
 - Scapy
- Defense detection
 - Load balancer detection
 - Web application firewall (WAF) detection
 - Antivirus
 - Firewall
- Tokens
 - Scoping
 - Issuing
 - Revocation
- Wardriving
- Network traffic
 - Capture API requests and responses
 - Sniffing
- Cloud asset discovery
- Third-party hosted services
- Detection avoidance

MODULE 3 - GIVEN A SCENARIO, ANALYZE THE RESULTS OF A RECONNAISSANCE EXERCISE.

- Fingerprinting
 - Operating systems (OSs)
 - Networks
 - Network devices
 - Software
- Analyze output from:
 - o DNS lookups
 - Crawling websites
 - Network traffic

- o Address Resolution Protocol (ARP) traffic
- o Nmap scans
- o Web logs

MODULE 4 - GIVEN A SCENARIO, PERFORM VULNERABILITY SCANNING.

- Considerations of vulnerability scanning
 - o Time to run scans
 - Protocols
 - Network topology
 - o Bandwidth limitations
 - Query throttling
 - Fragile systems
 - Non-traditional assets
- Scan identified targets for vulnerabilities
- Set scan settings to avoid detection
- Scanning methods
 - o Stealth scan
 - Transmission Control Protocol (TCP) connect scan
 - Credentialed vs. non-credentialed
- Nmap
 - o Nmap Scripting Engine (NSE) scripts
 - Common options
 - A
 - sV
 - sT
 - Pn
 - O
 - sU
 - sS
 - T1-5
 - script=vuln
 - r
- Vulnerability testing tools that facilitate automation

UNIT 3 – ATTACKS AND EXPLOITS

MODULE 1 – GIVEN A SCENARIO, RESEARCH ATTACK VECTORS AND PERFORM NETWORK ATTACKS.

- Stress testing for availability
- Exploit resources
 - Exploit database (DB)
 - Packet storm
- Attacks
 - ARP poisoning
 - o Exploit chaining
 - Password attacks
 - Password spraying
 - Hash cracking
 - Brute force

- Dictionary
- On-path (previously known as man-in-the-middle)
- Kerberoasting
- DNS cache poisoning
- Virtual local area network (VLAN) hopping
- Network access control (NAC) bypass
- Media access control (MAC) spoofing
- Link-Local Multicast Name Resolution (LLMNR)/NetBIOS- Name Service (NBT-NS) poisoning
- New Technology LAN Manager (NTLM) relay attacks
- Tools
 - Metasploit
 - Netcat
 - Nmap

MODULE 2 – GIVEN A SCENARIO, RESEARCH ATTACK VECTORS AND PERFORM WIRELESS ATTACKS.

- Attack methods
 - Eavesdropping
 - Data modification
 - Data corruption
 - Relay attacks
 - Spoofing
 - o Deauthentication
 - Jamming
 - Capture handshakes
 - o On-path
- Attacks
 - o Evil twin
 - Captive portal
 - Bluejacking
 - Bluesnarfing
 - o Radio-frequency identification (RFID) cloning
 - Bluetooth Low Energy (BLE) attack
 - o Amplification attacks [Near-field communication (NFC)]
 - WiFi protected setup (WPS) PIN attack
- Tools
 - Aircrack-ng suite
 - o Amplified antenna

MODULE 3 – GIVEN A SCENARIO, RESEARCH ATTACK VECTORS AND PERFORM APPLICATION-BASED ATTACKS.

- OWASP Top 10
- Server-side request forgery
- Business logic flaws
- Injection attacks
 - Structured Query Language (SQL) injection
 - Blind SQL
 - Boolean SQL
 - Stacked queries

- Command injection
- Cross-site scripting
 - Persistent
 - Reflected
- Lightweight Directory Access Protocol (LDAP) injection
- Application vulnerabilities
 - Race conditions
 - Lack of error handling
 - Lack of code signing
 - Insecure data transmission
 - Session attacks
 - Session hijacking
 - Cross-site request forgery (CSRF)
 - Privilege escalation
 - Session replay
 - Session fixation
- API attacks
 - Restful
 - Extensible Markup Language- Remote Procedure Call (XML-RPC)
 - Soap
- Directory traversal
- Tools
 - Web proxies
 - OWASP Zed Attack Proxy (ZAP)
 - Burp Suite community edition
 - SQLmap
 - DirBuster
- Resources
 - Word lists

MODULE 4 – GIVEN A SCENARIO, RESEARCH ATTACK VECTORS AND PERFORM ATTACKS ON CLOUD TECHNOLOGIES.

- Attacks
 - o Credential harvesting
 - o Privilege escalation
 - Account takeover
 - Metadata service attack
 - Misconfigured cloud assets
 - Identity and access management (IAM)
 - Federation misconfigurations
 - Object storage
 - Containerization technologies
 - Resource exhaustion
 - Cloud malware injection attacks
 - Denial-of-service attacks
 - Side-channel attacks
 - Direct-to-origin attacks
- Tools
 - Software development kit (SDK)

MODULE 5 – EXPLAIN COMMON ATTACKS AND VULNERABILITIES AGAINST SPECIALIZED SYSTEMS.

- Mobile
 - Attacks
 - Reverse engineering
 - Sandbox analysis
 - Spamming
 - Vulnerabilities
 - Insecure storage
 - Passcode vulnerabilities
 - Certificate pinning
 - Using known vulnerable components (i) Dependency vulnerabilities (ii) Patching fragmentation
 - Execution of activities using root
 - Over-reach of permissions
 - Biometrics integrations
 - Business logic vulnerabilities
 - Tools
 - Burp Suite
 - Drozer
 - Mobile Security Framework (MobSF)
 - Postman
 - Ettercap
 - Frida
 - Objection
 - Android SDK tools
 - ApkX
 - APK Studio
- Internet of Things (IoT) devices
 - BLE attacks
 - Special considerations
 - Fragile environment
 - Availability concerns
 - Data corruption
 - Data exfiltration
 - Vulnerabilities
 - Insecure defaults
 - Cleartext communication
 - Hard-coded configurations
 - Outdated firmware/hardware
 - Data leakage
 - Use of insecure or outdated components
- Data storage system vulnerabilities
 - Misconfigurations—on-premises and cloud-based
 - Default/blank username/password
 - Network exposure
 - Lack of user input sanitization
 - Underlying software vulnerabilities
 - Error messages and debug handling
 - Injection vulnerabilities

- Single quote method
- Management interface vulnerabilities
 - Intelligent platform management interface (IPMI)
- Vulnerabilities related to supervisory control and data acquisition (SCADA)/ Industrial Internet of Things (IIoT)/ industrial control system (ICS)
- Vulnerabilities related to virtual environments
 - Virtual machine (VM) escape
 - Hypervisor vulnerabilities
 - VM repository vulnerabilities
- Vulnerabilities related to containerized workloads

MODULE 6 - GIVEN A SCENARIO, PERFORM A SOCIAL ENGINEERING OR PHYSICAL ATTACK.

- Pretext for an approach
- Social engineering attacks
 - o Email phishing
 - Whaling
 - Spear phishing
 - Vishing
 - Short message service (SMS) phishing
 - Universal Serial Bus (USB) drop key
 - Watering hole attack
- Physical attacks
 - Tailgating
 - Dumpster diving
 - Shoulder surfing
 - Badge cloning
- Impersonation
- Tools
 - Browser exploitation framework (BeEF)
 - Social engineering toolkit
 - Call spoofing tools
- Methods of influence
 - Authority
 - Scarcity
 - Social proof
 - Urgency
 - Likeness
 - Fear

MODULE 7 – GIVEN A SCENARIO, PERFORM POST-EXPLOITATION TECHNIQUES.

- Post-exploitation tools
 - o Empire
 - Mimikatz
 - o BloodHound
- Lateral movement
 - o Pass the hash
- Network segmentation testing
- Privilege escalation
 - Horizontal
 - Vertical

- Upgrading a restrictive shell
- Creating a foothold/persistence
 - o Trojan
 - Backdoor
 - Bind shell
 - Reverse shell
 - Daemons
 - Scheduled tasks
- Detection avoidance
 - Living-off-the-land techniques/fileless malware
 - PsFvec
 - Windows Management Instrumentation (WMI)
 - PowerShell (PS) remoting/Windows Remote Management (WinRM)
 - Data exfiltration
 - Covering your tracks
 - Steganography
 - Establishing a covert channel
- Enumeration
 - Users
 - Groups
 - Forests
 - Sensitive data
 - Unencrypted files

UNIT 4 – REPORTING AND COMMUNICATION

MODULE 1 - COMPARE AND CONTRAST IMPORTANT COMPONENTS OF WRITTEN REPORTS.

- Report audience
 - o C-suite
 - o Third-party stakeholders
 - o Technical staff
 - o Developers
- Report contents (** not in a particular order)
 - o Executive summary
 - Scope details
 - Methodology
 - Attack narrative
 - Findings
 - Risk rating (reference framework)
 - Risk prioritization
 - Business impact analysis
 - Metrics and measures
 - Remediation
 - Conclusion
 - Appendix
- Storage time for report
- Secure distribution
- Note taking
 - Ongoing documentation during test
 - Screenshots

- Common themes/root causes
 - Vulnerabilities
 - Observations
 - Lack of best practices

MODULE 2 – GIVEN A SCENARIO, ANALYZE THE FINDINGS AND RECOMMEND THE APPROPRIATE REMEDIATION WITHIN A REPORT.

- Technical controls
 - System hardening
 - Sanitize user input/parameterize queries
 - o Implemented multifactor authentication
 - Encrypt passwords
 - o Process-level remediation
 - o Patch management
 - Key rotation
 - o Certificate management
 - Secrets management solution
 - Network segmentation
- Administrative controls
 - Role-based access control
 - Secure software development life cycle
 - Minimum password requirements
 - Policies and procedures
- Operational controls
 - Job rotation
 - Time-of-day restrictions
 - Mandatory vacations
 - User training
- Physical controls
 - o Access control vestibule
 - Biometric controls
 - Video surveillance

MODULE 3 – EXPLAIN THE IMPORTANCE OF COMMUNICATION DURING THE PENETRATION TESTING PROCESS.

- Communication path
 - o Primary contact
 - o Technical contact
 - Emergency contact
- Communication triggers
 - Critical findings
 - Status reports
 - o Indicators of prior compromise
- Reasons for communication
 - Situational awareness
 - De-escalation
 - Deconfliction
 - Identifying false positives
 - Criminal activity

- Goal reprioritization
- Presentation of findings

MODULE 4 - EXPLAIN POST-REPORT DELIVERY ACTIVITIES.

- Post-engagement cleanup
 - o Removing shells
 - o Removing tester-created credentials
 - o Removing tools
- Client acceptance
- Lessons learned
- Follow-up actions/retest
- Attestation of findings Data destruction process

UNIT 5 – EXPLAIN USE CASES OF THE FOLLOWING TOOLS DURING THE PHASES OF A PENETRATION TEST.

- Scanners
 - Nikto
 - o Open vulnerability assessment scanner (Open VAS)
 - o SQLmap
 - Nessus
 - Open Security Content Automation Protocol (SCAP)
 - o Wapiti
 - o WPScan
 - o Brakeman
 - Scout Suite
- Credential testing tools
 - Hashcat
 - Medusa
 - o Hydra
 - CeWL
 - John the Ripper
 - o Cain
 - Mimikatz
 - Patator
 - DirBuster
- Debuggers
 - OllyDbg
 - o Immunity Debugger
 - GNU Debugger (GDB)
 - WinDbg
 - Interactive Disassembler (IDA)
 - Covenant
 - SearchSploit
- OSINT
 - o WHOIS
 - Nslookup
 - o Fingerprinting Organization with Collected Archives (FOCA)
 - o theHarvester
 - Shodan

- Maltego
- o Recon-ng
- Censys
- Wireless
 - o Aircrack-ng suite
 - Kismet
 - o Wifite2
 - Rogue access point
 - EAPHammer
 - o mdk4
 - Spooftooph
 - o Reaver
 - Wireless Geographic Logging Engine (WiGLE)
 - o Fern
- Web application tools
 - OWASP ZAP
 - o Burp Suite
 - o Gobuster
 - o w3af
- Social engineering tools
 - Social Engineering Toolkit (SET)
 - BeEF
- Remote access tools
 - Secure Shell (SSH)
 - o Ncat
 - Netcat
 - ProxyChains
- Networking tools
 - Wireshark
 - o Hping
- Misc.
 - SearchSploit
 - Responder
 - o Impacket tools
 - o Empire
 - Metasploit
 - o mitm6
 - CrackMapExec
 - TruffleHog
 - Censys
- Steganography tools
 - Openstego
 - o Steghide
 - Snow
 - Coagula
 - o Sonic Visualiser
 - o TinEye
- Cloud tools
 - o Scout Suite
 - o CloudBrute

- o Pacu
- Cloud Custodian

LABORATORI PRATICI COMPTIA PENTEST PLUS

- 01: Exploring the Lab Environment
- 02: Exploring the Domain Tools: Nslookup, Dig, and Whois
- 03: Navigating Open-Source Intelligence Tools
- 04: Understanding Social Engineering Toolkit (SET)
- 05: Understanding Spear Phishing and Credentials Attack
- 06: Exploring OpenVAS
- 07: Using Web Scanners
- 08: Understanding Nmap Common Usage
- 09: Scanning a Vulnerable System
- 10: Understanding Scan Output
- 11: Navigating Steganography Tools
- 12: Demonstrating Enumeration Techniques
- 13: Exploring the Basics of Metasploit
- 14: Using VSFTP Manual and Metasploit
- 15: Monitoring with Aircrack-ng
- 16: Discovering IoT devices with Shodan
- 17: Using SQL Injection
- 18: Using Reverse and Bind Shells
- 19: Analyzing Exploit Code
- 20: Exploring Programming Shells
- 21: Applying PenTest Automation
- 22: Exploring Password Attacks with John the Ripper and Hydra
- 12 ore 30 minuti di laboratori
- Per ogni laboratorio è fornito un tutorial scritto e illustrato su come svolgere il laboratorio passo dopo passo
- La piattaforma dei laboratori è in CLOUD
- La durata di ogni singolo laboratorio varia tra i 30 ed i 60 minuti

