

Corso Ethical Hacker & Security Manager

SOMMARIO

MODULO A: SECURITY MANAGER PER LA CERTIFICAZIONE COMPTIA SECURITY+

MODULO B: ETHICAL HACKER PER LA CERTIFICAZIONE COMPTIA PENTEST+

LABORATORI PRATICI: COMPTIA SECURITY PLUS

LABORATORI PRATICI: COMPTIA PENTEST PLUS

MODULO SECURITY MANAGER PER LA CERTIFICAZIONE COMPTIA SECURITY+

UNIT 1 - THREATS, ATTACKS, AND VULNERABILITIES

MODULE 1 - COMPARE AND CONTRAST DIFFERENT TYPES OF SOCIAL ENGINEERING TECHNIQUES

- ✓ Phishing
- ✓ Smishing
- ✓ Vishing
- ✓ Spam
- ✓ Spam over instant messaging (SPIM)
- ✓ Spear phishing
- ✓ Dumpster diving
- ✓ Shoulder surfing
- ✓ Pharming
- √ Tailgating
- ✓ Eliciting information

- ✓ Whaling
- ✓ Prepending
- ✓ Identity fraud
- ✓ Invoice scams
- ✓ Credential harvesting
- ✓ Reconnaissance
- ✓ Hoax
- ✓ Impersonation
- ✓ Watering hole attack
- ✓ Typosquatting
- ✓ Pretexting
- ✓ Influence campaigns
 - Hybrid warfare
 - o Social media
- ✓ Principles (reasons for effectiveness)
 - Authority
 - o Intimidation
 - o Consensus
 - Scarcity
 - o Familiarity
 - o Trust
 - Urgency

MODULE 2 - GIVEN A SCENARIO, ANALYZE POTENTIAL INDICATORS TO DETERMINE THE TYPE OF ATTACK

✓ Malware

- o Ransomware
- o Trojans
- o Worms
- o Potentially unwanted programs (PUPs)
- o Fileless virus
- Command and control
- Bots
- o Cryptomalware
- Logic bombs
- Spyware
- Keyloggers
- Remote access Trojan (RAT)
- o Rootkit
- o Backdoor
- ✓ Password attacks
 - Spraying
 - Dictionary
 - Brute force
 - Offline
 - Online
 - Rainbow table

- Plaintext/unencrypted
- ✓ Physical attacks
 - o Malicious Universal Serial Bus (USB) cable
 - Malicious flash drive
 - Card cloning
 - Skimming
- √ Adversarial artificial intelligence (AI)
 - o Tainted training data for machine learning (ML)
 - Security of machine learning algorithms
- ✓ Supply-chain attacks
- ✓ Cloud-based vs. on-premises attacks
- ✓ Cryptographic attacks
 - Birthday
 - o Collision
 - o Downgrade

MODULE 3 - GIVEN A SCENARIO, ANALYZE POTENTIAL INDICATORS ASSOCIATED WITH APPLICATION ATTACKS

- ✓ Privilege escalation
- ✓ Cross-site scripting
- ✓ Injections
 - Structured query language (SQL)
 - Dynamic-link library (DLL)
 - Lightweight Directory Access Protocol (LDAP)
 - Extensible Markup Language (XML)
- ✓ Pointer/object dereference
- ✓ Directory traversal
- ✓ Buffer overflows
- ✓ Race conditions
 - o Time of check/time of use
- ✓ Error handling
- ✓ Improper input handling
- ✓ Replay attack
 - o Session replays
- ✓ Integer overflow
- ✓ Request forgeries
 - o Server-side
 - o Cross-site
- ✓ Application programming/interface (API) attacks
- ✓ Resource exhaustion
- ✓ Memory leak
- ✓ Secure Sockets Layer (SSL) stripping
- ✓ Driver manipulation
 - Shimming
 - Refactoring
- ✓ Pass the hash

MODULE 4 - GIVEN A SCENARIO, ANALYZE POTENTIAL INDICATORS ASSOCIATED WITH NETWORK ATTACKS

- ✓ Wireless
 - o Evil twin
 - o Rogue access point
 - Bluesnarfing
 - o Bluejacking
 - Disassociation
 - Jamming
 - Radio frequency identification (RFID)
 - Near-field communication (NFC)
 - Initialization vector (IV)
- ✓ On-path attack (conosciuto anche come man-in-the-middle attack/ man-in-the-browser attack)
- ✓ Layer 2 attacks
 - Address Resolution / Protocol (ARP) poisoning
 - o Media access control (MAC) flooding
 - MAC cloning
- ✓ Domain name system (DNS)
 - o Domain hijacking
 - DNS poisoning
 - o Uniform Resource Locator (URL) redirection
 - o Domain reputation
- ✓ Distributed denial-of-service (DDoS)
 - Network
 - Application
 - Operational technology (OT)
- ✓ Malicious code or script execution
 - o PowerShell
 - o Python
 - Bash
 - Macros
 - Visual Basic for Applications (VBA)

MODULE 5 - EXPLAIN DIFFERENT THREAT ACTORS, VECTORS, AND INTELLIGENCE SOURCES

- ✓ Actors and threats
 - Advanced persistent threat (APT)
 - Insider threats
 - State actors
 - Hacktivists
 - Script kiddies
 - Criminal syndicates
 - Hackers
 - Authorized
 - Unauthorized
 - Semi-authorized

- Shadow IT
- o Competitors
- ✓ Attributes of actors
 - o Internal/external
 - Level of sophistication/capability
 - Resources/funding
 - o Intent/motivation
- ✓ Vectors
 - Direct access
 - Wireless
 - o Email
 - o Supply chain
 - o Social media
 - o Removable media
 - o Cloud
- ✓ Threat intelligence sources
 - Open-source intelligence (OSINT)
 - Closed/proprietary
 - Vulnerability databases
 - Public/private information-sharing centers
 - o Dark web
 - o Indicators of compromise
 - Automated Indicator Sharing (AIS)
 - Structured Threat Information expression (STIX) / Trusted Automated exchange of Intelligence Information (TAXII)
 - Predictive analysis
 - Threat maps
 - File/code repositories
- ✓ Research sources
 - Vendor websites
 - Vulnerability feeds
 - Conferences
 - o Academic journals
 - Request for comments (RFC)
 - Local industry groups
 - Social media
 - Threat feeds
 - Adversary tactics, techniques, and procedures (TTP)

MODULE 6 - EXPLAIN THE SECURITY CONCERNS ASSOCIATED WITH VARIOUS TYPES OF VULNERABILITIES

- ✓ Cloud-based vs. on-premises vulnerabilities
- ✓ Zero-day
- ✓ Weak configurations
 - Open permissions
 - Unsecure root accounts
 - o Errors

- Weak encryption
- o Unsecure protocols
- Default settings
- Open ports and services
- √ Third-party risks
 - Vendor management
 - System integration
 - Lack of vendor support
 - o Supply chain
 - o Outsourced code development
 - Data storage
- ✓ Improper or weak patch management
 - o Firmware
 - Operating system (OS)
 - Applications
- ✓ Legacy platforms
- ✓ Impacts
 - o Data loss
 - Data breaches
 - Data exfiltration
 - o Identity theft
 - o Financial
 - o Reputation
 - o Availability loss

MODULE 7 - SUMMARIZE THE TECHNIQUES USED IN SECURITY ASSESSMENTS

- ✓ Threat hunting
 - o Intelligence fusion
 - Threat feeds
 - Advisories and bulletins
 - Maneuver
- ✓ Vulnerability scans
 - False positives
 - False negatives
 - Log reviews
 - o Credentialed vs. non-credentialed
 - Intrusive vs. non-intrusive
 - Application
 - Web application
 - o Network
 - Common Vulnerabilities and Exposures (CVE) / Common Vulnerability Scoring System (CVSS)
 - Configuration review
- ✓ Syslog/Security information and event management (SIEM)
 - Review reports
 - Packet capture
 - Data inputs

- User behavior analysis
- o Sentiment analysis
- Security monitoring
- o Log aggregation
- Log collectors
- ✓ Security orchestration, automation, and response (SOAR)

MODULE 8 - EXPLAIN THE TECHNIQUES USED IN PENETRATION TESTING

- ✓ Penetration testing
 - Known environment
 - Unknown environment
 - o Partially known environment
 - o Rules of engagement
 - Lateral movement
 - o Privilege escalation
 - o Persistence
 - o Cleanup
 - Bug bounty
 - Pivoting
- ✓ Passive and active reconnaissance
 - o Drones
 - War flying
 - War driving
 - Footprinting
 - OSINT
- ✓ Exercise types
 - o Red-team
 - o Blue-team
 - White-team
 - o Purple-team

UNIT 2 - ARCHITECTURE AND DESIGN

MODULE 1 - EXPLAIN THE IMPORTANCE OF SECURITY CONCEPTS IN AN ENTERPRISE ENVIRONMENT

- ✓ Configuration management
 - o Diagrams
 - o Baseline configuration
 - Standard naming conventions
 - o Internet protocol (IP) schema
- ✓ Data sovereignty
- ✓ Data protection
 - o Data loss prevention (DLP)
 - Masking
 - Encryption

- At rest
- o In transit/motion
- In processing
- o Tokenization
- o Rights management
- ✓ Geographical considerations
- ✓ Response and recovery controls
- ✓ Secure Sockets Layer (SSL)/Transport Layer Security (TLS) inspection
- ✓ Hashing
- ✓ API considerations
- ✓ Site resiliency
 - o Hot site
 - o Cold site
 - o Warm site
- ✓ Deception and disruption
 - Honeypots
 - Honeyfiles
 - Honeynets
 - Fake telemetry
 - o DNS sinkhole

MODULE 2 - SUMMARIZE VIRTUALIZATION AND CLOUD COMPUTING CONCEPTS

- ✓ Cloud models
 - o Infrastructure as a service (laaS)
 - o Platform as a service (PaaS)
 - Software as a service (SaaS)
 - Anything as a service (XaaS)
 - o Public
 - Community
 - o Private
 - o Hybrid
- ✓ Cloud service providers
- √ Managed service provider (MSP) / Managed Security Service Provider (MSSP)
- ✓ On-premises vs. off-premises
- √ Fog computing
- ✓ Edge computing
- ✓ Thin client
- ✓ Containers
- ✓ Microservices/API
- ✓ Infrastructure as code
 - Software-defined networking (SDN)
 - Software-defined visibility (SDV)
- ✓ Serverless architecture
- ✓ Services integration
- ✓ Resource policies

- ✓ Transit gateway
- ✓ Virtualization
 - o Virtual machine (VM) sprawl avoidance
 - VM escape protection

MODULE 3 - SUMMARIZE SECURE APPLICATION DEVELOPMENT, DEPLOYMENT, AND AUTOMATION CONCEPTS

- ✓ Environment
 - o Development
 - o Test
 - Staging
 - o Production
 - Quality assurance (QA)
- ✓ Provisioning and deprovisioning
- ✓ Integrity measurement
- ✓ Secure coding techniques
 - Normalization
 - Stored procedures
 - o Obfuscation/camouflage
 - Code reuse/dead code
 - o Server-side vs. client-side execution and validation
 - Memory management
 - o Use of third-party libraries and software development kits (SDKs)
 - o Data exposure
- ✓ Open Web Application Security Project (OWASP)
- ✓ Software diversity
 - o Compiler
 - Binary
- ✓ Automation/scripting
 - Automated courses of action
 - Continuous monitoring
 - o Continuous validation
 - Continuous integration
 - Continuous delivery
 - o Continuous deployment
- ✓ Elasticity
- ✓ Scalability
- ✓ Version control

MODULE 4 - SUMMARIZE AUTHENTICATION AND AUTHORIZATION DESIGN CONCEPTS.

- ✓ Authentication methods
 - Directory services
 - Federation
 - Attestation
 - o Technologies

- Time-based one-time password (TOTP)
- HMAC-based one-time password (HOTP)
- Short message service (SMS)
- Token key
- Static codes
- Authentication applications
- Push notifications
- Phone call
- o Smart card authentication
- ✓ Biometrics
 - Fingerprint
 - o Retina
 - o Iris
 - o Facial
 - Voice
 - Vein
 - Gait analysis
 - Efficacy rates
 - False acceptance
 - False rejection
 - Crossover error rate
- ✓ Multifactor authentication (MFA) factors and attributes
 - Factors
 - Something you know
 - Something you have
 - Something you are
 - Attributes
 - Somewhere you are
 - Something you can do
 - Something you exhibit
 - Someone you know
- ✓ Authentication, authorization, and accounting (AAA)
- ✓ Cloud vs. on-premises requirements

MODULE 5 - GIVEN A SCENARIO, IMPLEMENT CYBERSECURITY RESILIENCE

- ✓ Redundancy
 - Geographic dispersal
 - o Disk
 - Redundant array of inexpensive disks (RAID) levels
 - Multipath
- ✓ Network
 - Load balancers
 - Network interface card (NIC) teaming
- ✓ Power
 - Uninterruptible power supply (UPS)

- Generator
- Dual supply
- Managed power distribution units (PDUs)
- ✓ Replication
 - Storage area network
 - o VM
- ✓ On-premises vs. cloud
- ✓ Backup types
 - o Full
 - o Incremental
 - o Snapshot
 - Differential
 - Tape
 - o Disk
 - Copy
 - Network-attached storage (NAS)
 - Storage area network
 - Cloud
 - o Image
 - o Online vs. offline
 - Offsite storage
 - Distance considerations
- ✓ Non-persistence
 - o Revert to known state
 - Last known-good configuration
 - o Live boot media
- ✓ High availability
 - Scalability
- ✓ Restoration order
- ✓ Diversity
 - o Technologies
 - Vendors
 - o Crypto
 - o Controls

MODULE 6 - EXPLAIN THE SECURITY IMPLICATIONS OF EMBEDDED AND SPECIALIZED SYSTEMS

- ✓ Embedded systems
 - o Raspberry Pi
 - o Field-programmable gate array (FPGA)
 - Arduince
- ✓ Supervisory control and data acquisition / (SCADA)/industrial control system (ICS)
 - o Facilities
 - o Industrial
 - Manufacturing
 - Energy
 - Logistics

- ✓ Internet of Things (IoT)
 - Sensors
 - Smart devices
 - Wearables
 - o Facility automation
 - Weak defaults
- ✓ Specialized
 - Medical systems
 - Vehicles
 - Aircraft
 - Smart meters
- ✓ Voice over IP (VoIP)
- ✓ Heating, ventilation, air conditioning (HVAC)
- ✓ Drones
- ✓ Multifunction printer (MFP)
- ✓ Real-time operating system (RTOS)
- ✓ Surveillance systems
- ✓ System on chip (SoC)
- ✓ Communication considerations
 - o 5G
 - Narrow-band
 - o Baseband radio
 - o Subscriber identity module (SIM) cards
 - Zigbee
- ✓ Constraints
 - o Power
 - o Compute
 - Network
 - o Crypto
 - o Inability to patch
 - Authentication
 - o Range
 - o Cost
 - Implied trust

MODULE 7 - EXPLAIN THE IMPORTANCE OF PHYSICAL SECURITY CONTROLS

- ✓ Bollards/barricades
- ✓ Access control vestibules
- ✓ Badges
- ✓ Alarms
- ✓ Signage
- ✓ Cameras
 - o Motion recognition
 - Object detection
- ✓ Closed-circuit television (CCTV)
- ✓ Industrial camouflage

- ✓ Personnel
 - o Guards
 - Robot sentries
 - Reception
 - Two-person integrity/control
- ✓ Locks
 - Biometrics
 - Electronic
 - o Physical
 - o Cable locks
- ✓ USB data blocker
- ✓ Lighting
- ✓ Fencing
- √ Fire suppression
- ✓ Sensors
 - o Motion detection
 - Noise detection
 - Proximity reader
 - o Moisture detection
 - Cards
 - o Temperature
- ✓ Drones
- ✓ Visitor logs
- √ Faraday cages
- ✓ Air gap
- ✓ Screened subnet (DMZ)
- ✓ Protected cable distribution
- ✓ Secure areas
 - o Air gap
 - Vault
 - o Safe
 - Hot aisle
 - Cold aisle
- ✓ Secure data destruction
 - o Burning
 - Shredding
 - Pulping
 - Pulverizing
 - o Degaussing
 - Third-party solutions

MODULE 8 - SUMMARIZE THE BASICS OF CRYPTOGRAPHIC CONCEPTS

- ✓ Digital signatures
- ✓ Key length
- √ Key stretching
- ✓ Salting
- ✓ Hashing

- ✓ Key exchange
- ✓ Elliptic-curve cryptography
- ✓ Perfect forward secrecy
- ✓ Quantum
 - o Communications
 - Computing
- ✓ Post-quantum
- ✓ Ephemeral
- ✓ Modes of operation
 - o Authenticated
 - Unauthenticated
 - Counter
- ✓ Blockchain
 - o Public ledgers
- ✓ Cipher suites
 - o Stream
 - o Block
- ✓ Symmetric vs. asymmetric
- ✓ Lightweight cryptography
- ✓ Steganography
 - o Audio
 - o Video
 - o Image
- ✓ Homomorphic encryption
- ✓ Common use cases
 - Low power devices
 - Low latency
 - High resiliency
 - Supporting confidentiality
 - Supporting integrity
 - Supporting obfuscation
 - Supporting authentication
 - o Supporting non-repudiation
- ✓ Limitations
 - o Speed
 - o Size
 - Weak keys
 - o Time
 - Longevity
 - o Predictability
 - o Reuse
 - Entropy
 - o Computational overheads
 - o Resource vs. security constraints

UNIT 3 - IMPLEMENTATION

MODULE 1 - GIVEN A SCENARIO, IMPLEMENT SECURE PROTOCOLS

✓ Protocols

- Domain Name System Security Extensions (DNSSEC)
- o SSH
- Secure/Multipurpose Internet Mail Extensions (S/MIME)
- Secure Real-time Transport / Protocol (SRTP)
- Lightweight Directory Access Protocol Over SSL (LDAPS)
- File Transfer Protocol, Secure (FTPS)
- SSH File Transfer Protocol (SFTP)
- Simple Network Management / Protocol, version 3 (SNMPv3)
- Hypertext transfer protocol over SSL/TLS (HTTPS)
- IPSec
 - Authentication header (AH)
 - Encapsulating Security Payloads (ESP)
 - Tunnel/transport
- Post Office Protocol (POP)/Internet Message Access Protocol (IMAP)

✓ Use cases

- Voice and video
- Time synchronization
- o Email and web
- File transfer
- Directory services
- Remote access
- Domain name resolution
- Routing and switching
- Network address allocation
- Subscription services

MODULE 2 - GIVEN A SCENARIO, IMPLEMENT HOST OR APPLICATION SECURITY SOLUTIONS

✓ Endpoint protection

- o Antivirus
- o Anti-malware
- Endpoint detection and response (EDR)
- o DLP
- Next-generation firewall (NGFW)
- Host-based intrusion prevention system (HIPS)
- Host-based intrusion detection system (HIDS)
- Host-based firewall

✓ Boot integrity

- Boot security/Unified Extensible Firmware Interface (UEFI)
- Measured boot
- o Boot attestation

✓ Database

- Tokenization
- Salting

- Hashing
- ✓ Application security
 - Input validations
 - Secure cookies
 - Hypertext Transfer Protocol (HTTP) headers
 - Code signing
 - o Allow list
 - Block list/deny list
 - Secure coding practices
 - Static code analysis
 - Manual code review
 - Dynamic code analysis
 - Fuzzing
- ✓ Hardening
 - Open ports and services
 - Registry
 - o Disk encryption
 - o OS
 - Patch management
 - Third-party updates
 - Auto-update
- ✓ Self-encrypting drive (SED)/full-disk encryption (FDE)
 - o Opal
- ✓ Hardware root of trust
- ✓ Trusted Platform Module (TPM)
- ✓ Sandboxing

MODULE 3 - GIVEN A SCENARIO, IMPLEMENT SECURE NETWORK DESIGNS

- ✓ Load balancing
 - Active/active
 - o Active/passive
 - Scheduling
 - Virtual IP
 - o Persistence
- ✓ Network segmentation
 - Virtual local area network (VLAN)
 - Screened subnet (previously known as demilitarized zone)
 - East-west traffic
 - Extranet
 - Intranet
 - o Zero Trust
- ✓ Virtual private network (VPN)
 - o Always-on
 - Split tunnel vs. full tunnel
 - o Remote access vs. site-to-site
 - o IPSec
 - o SSL/TLS

- o HTML5
- Layer 2 tunneling protocol (L2TP)
- ✓ DNS
- ✓ Network access control (NAC)
 - Agent and agentless
- ✓ Out-of-band management
- ✓ Port security
 - Broadcast storm prevention
 - o Bridge Protocol Data Unit (BPDU) guard
 - Loop prevention
 - Dynamic Host Configuration Protocol (DHCP) snooping
 - o Media access control (MAC) filtering
- ✓ Network appliances
 - o Jump servers
 - Proxy servers
 - Forward
 - Reverse
 - Network-based intrusion detection system (NIDS)/network-based intrusion prevention system (NIPS)
 - Signature-based
 - Heuristic/behavior
 - Anomaly
 - Inline vs. passive
 - o HSM
 - Sensors
 - Collectors
 - Aggregators
 - Firewalls
 - Web application firewall (WAF)
 - NGFW
 - Stateful
 - Stateless
 - Unified threat management (UTM)
 - Network address translation (NAT) gateway
 - Content/URL filter
 - Open-source vs. proprietary
 - Hardware vs. software
 - Appliance vs. host-based vs. virtual
 - Access control list (ACL)
 - Route security
 - Quality of service (QoS)
 - Implications of IPv6
 - Port spanning/port mirroring/Port taps
 - Monitoring services
 - o File integrity monitors

MODULE 4 - GIVEN A SCENARIO, INSTALL AND CONFIGURE WIRELESS SECURITY SETTINGS

- ✓ Cryptographic protocols
 - WiFi Protected Access 2 (WPA2)
 - WiFi Protected Access 3 (WPA3)
 - Counter-mode/CBC-MAC Protocol (CCMP)
 - o Simultaneous Authentication of Equals (SAE)
- ✓ Authentication protocols
 - Extensible Authentication Protocol (EAP)
 - Protected Extensible Authentication Protocol (PEAP)
 - o EAP-FAST
 - o EAP-TLS
 - o EAP-TTLS
 - o IEEE 802.1X
- ✓ Remote Authentication Dial-in User Service (RADIUS) Federation
- ✓ Methods
 - o Pre-shared key (PSK) vs. Enterprise vs. Open
 - WiFi Protected Setup (WPS)
 - Captive portals
- ✓ Installation considerations
 - Site surveys
 - Heat maps
 - WiFi analyzers
 - Channel overlaps
 - Wireless access point (WAP) placement
 - Controller and access point security

MODULE 5 - GIVEN A SCENARIO, IMPLEMENT SECURE MOBILE SOLUTIONS.

- ✓ Connection methods and receivers
 - o Cellular
 - o WiFi
 - o Bluetooth
 - o NFC
 - Infrared
 - o USB
 - o Point-to-point
 - o Point-to-multipoint
 - Global Positioning System (GPS)
 - o RFID
- ✓ Mobile device management (MDM)
 - Application management
 - Content management
 - Remote wipe
 - Geofencing
 - o Geolocation
 - Screen locks
 - Push notifications
 - Passwords and PINs
 - o Biometrics

- Context-aware authentication
- Containerization
- Storage segmentation
- o Full device encryption
- ✓ Mobile devices
 - MicroSD hardware security module (HSM)
 - MDM/Unified Endpoint Management (UEM)
 - Mobile application management (MAM)
 - o SEAndroid
- ✓ Enforcement and monitoring of:
 - Third-party application stores
 - o Rooting/jailbreaking
 - Sideloading
 - o Custom firmware
 - Carrier unlocking
 - o Firmware over-the-air (OTA) updates
 - o Camera use
 - SMS/Multimedia Messaging Service (MMS)/Rich Communication Services (RCS)
 - External media
 - USB On-The-Go (USB OTG)
 - Recording microphone
 - o GPS tagging
 - WiFi direct/ad hoc
 - Tethering
 - Hotspot
 - Payment methods
- ✓ Deployment models
 - Bring your own device (BYOD)
 - Corporate-owned personally enabled (COPE)
 - Choose your own device (CYOD)
 - o Corporate-owned
 - Virtual desktop infrastructure (VDI)

MODULE 6 - GIVEN A SCENARIO, APPLY CYBERSECURITY SOLUTIONS TO THE CLOUD.

- ✓ Cloud security controls
 - High availability across zones
 - Resource policies
 - Secrets management
 - Integration and auditing
 - Storage
 - Permissions
 - Encryption
 - Replication
 - High availability
 - Network
 - Virtual networks
 - Public and private subnets

- Segmentation
- API inspection and integration
- o Compute
 - Security groups
 - Dynamic resource allocation
 - Instance awareness
 - Virtual private cloud (VPC) endpoint
 - Container security

✓ Solutions

- o CASB
- Application security
- Next-generation secure web gateway (SWG)
- o Firewall considerations in a cloud environment
 - Cost
 - Need for segmentation
 - Open Systems Interconnection (OSI) layers
- ✓ Cloud native controls vs. third-party solutions

MODULE 7 - GIVEN A SCENARIO, IMPLEMENT IDENTITY AND ACCOUNT MANAGEMENT CONTROLS

- ✓ Identity
 - Identity provider (IdP)
 - o Attributes
 - Certificates
 - Tokens
 - o SSH keys
 - o Smart cards
- ✓ Account types
 - User account
 - Shared and generic accounts/credentials
 - Guest accounts
 - Service accounts
- Account policies
 - Password complexity
 - Password history
 - Password reuse
 - Network location
 - Geofencing
 - Geotagging
 - o Geolocation
 - Time-based logins
 - Access policies
 - Account permissions
 - Account audits
 - Impossible travel time/risky login
 - o Lockout
 - o Disablement

MODULE 8 – GIVEN A SCENARIO, IMPLEMENT AUTHENTICATION AND AUTHORIZATION SOLUTIONS

- ✓ Authentication management
 - Password keys
 - Password vaults
 - o TPM
 - o HSM
 - o Knowledge-based authentication
- ✓ Authentication/authorization
 - o EAF
 - Challenge-Handshake Authentication Protocol (CHAP)
 - Password Authentication Protocol (PAP)
 - o 802.1X
 - o RADIUS
 - Single sign-on (SSO)
 - Security Assertion Markup Language (SAML)
 - Terminal Access Controller Access Control System Plus (TACACS+)
 - OAuth
 - o OpenID
 - Kerberos
- ✓ Access control schemes
 - Attribute-based access control (ABAC)
 - o Role-based access control
 - o Rule-based access control
 - o MAC
 - Discretionary access control (DAC)
 - Conditional access
 - o Privileged access management
 - o Filesystem permissions

MODULE 9 - GIVEN A SCENARIO, IMPLEMENT PUBLIC KEY INFRASTRUCTURE

- ✓ Public key infrastructure (PKI)
 - Key management
 - Certificate authority (CA)
 - o Intermediate CA
 - Registration authority (RA)
 - o Certificate revocation list (CRL)
 - Certificate attributes
 - Online Certificate Status Protocol (OCSP)
 - Certificate signing request (CSR)
 - o CN
 - Subject alternative name
 - o Expiration
- ✓ Types of certificates
 - o Wildcard

- Subject alternative name
- o Code signing
- o Self-signed
- o Machine/computer
- o Email
- User
- o Root
- Domain validation
- o Extended validation

✓ Certificate formats

- Distinguished encoding rules (DER)
- Privacy enhanced mail (PEM)
- Personal information exchange (PFX)
- o .cer
- o P12
- o P7B

✓ Concepts

- o Online vs. offline CA
- Stapling
- Pinning
- o Trust model
- Key escrow
- Certificate chaining

UNIT 4 - OPERATIONS AND INCIDENT RESPONSE

MODULE 1 - GIVEN A SCENARIO, USE THE APPROPRIATE TOOL TO ASSESS ORGANIZATIONAL SECURITY

- ✓ Network reconnaissance and discovery
 - o tracert/traceroute
 - o nslookup/dig
 - ipconfig/ifconfig
 - o nmap
 - ping/pathping
 - o hping
 - o netstat
 - netcat
 - IP scanners
 - o arp
 - o route
 - o curl
 - o theHarvester & similar
 - o sn1per & similar
 - o scanless & similar
 - o dnsenum & similar
 - Nessus & similar
 - Cuckoo & similar

- ✓ File manipulation
 - o head
 - o tail
 - o cat
 - o grep
 - o chmod
 - logger
- ✓ Shell and script environments
 - o SSH
 - o PowerShell
 - o Python
 - o OpenSSL
- ✓ Packet capture and replay
 - o Tcpreplay
 - o Tcpdump
 - Wireshark
- ✓ Forensics
 - \circ dd
 - Memdump
 - o WinHex
 - o FTK imager
 - Autopsy
- ✓ Exploitation frameworks
- ✓ Password crackers
- ✓ Data sanitization

MODULE 2 - SUMMARIZE THE IMPORTANCE OF POLICIES, PROCESSES, AND PROCEDURES FOR INCIDENT RESPONSE

- ✓ Incident response plans
- ✓ Incident response process
 - o Preparation
 - o Identification
 - Containment
 - Eradication
 - Recovery
 - o Lessons learned
- ✓ Exercises
 - o Tabletop
 - Walkthroughs
 - Simulations
- ✓ Attack frameworks
 - o MITRE ATT&CK
 - The Diamond Model of Intrusion Analysis
 - o Cyber Kill Chain
- ✓ Stakeholder management
- ✓ Communication plan
- ✓ Disaster recovery plan

- ✓ Business continuity plan
- ✓ Continuity of operations planning (COOP)
- ✓ Incident response team
- ✓ Retention policies

MODULE 3 - GIVEN AN INCIDENT, UTILIZE APPROPRIATE DATA SOURCES TO SUPPORT AN INVESTIGATION

- ✓ Vulnerability scan output
- ✓ SIEM dashboards
 - o Sensor
 - Sensitivity
 - Trends
 - Alerts
 - Correlation
- ✓ Log files
 - Network
 - o System
 - o Application
 - Security
 - o Web
 - o DNS
 - Authentication
 - o Dump files
 - VoIP and call managers
 - Session Initiation Protocol (SIP) traffic
- ✓ Syslog/rsyslog/syslog-ng
- ✓ Journalctl
- ✓ NXLog
- ✓ Bandwidth monitors
- ✓ Metadata
 - o Email
 - Mobile
 - o Web
 - o File
- ✓ Netflow/sFlow
 - Netflow
 - o sFlow
 - o IPFIX
- ✓ Protocol analyzer output

MODULE 4 - GIVEN AN INCIDENT, APPLY MITIGATION TECHNIQUES OR CONTROLS TO SECURE AN ENVIRONMENT

- ✓ Reconfigure endpoint security solutions
 - Application approved list
 - Application blocklist/deny list
 - o Quarantine
- ✓ Configuration changes

- o Firewall rules
- o MDM
- o DLP
- o Content filter/URL filter
- Update or revoke certificates
- ✓ Isolation
- ✓ Containment
- √ Segmentation
- ✓ SOAR
 - o Runbooks
 - Playbooks

MODULE 5 - EXPLAIN THE KEY ASPECTS OF DIGITAL FORENSICS

- ✓ Documentation/evidence
 - o Legal hold
 - o Video
 - Admissibility
 - Chain of custody
 - Timelines of sequence of events
 - Time stamps
 - Time offset
 - Tags
 - o Reports
 - Event logs
 - Interviews
- ✓ Acquisition
 - Order of volatility
 - o Disk
 - Random-access memory (RAM)
 - Swap/pagefile
 - o OS
 - Device
 - o Firmware
 - o Snapshot
 - Cache
 - Network
 - Artifacts
- ✓ On-premises vs. cloud
 - Right-to-audit clauses
 - Regulatory/jurisdiction
 - o Data breach notification laws
- ✓ Integrity
 - Hashing
 - o Checksums
 - o Provenance

- ✓ Preservation
- ✓ E-discovery
- ✓ Data recovery
- √ Non-repudiation
- ✓ Strategic intelligence / counterintelligence

UNIT 5 - GOVERNANCE, RISK, AND COMPLIANCE

MODULE 1 - COMPARE AND CONTRAST VARIOUS TYPES OF CONTROLS

- ✓ Category
 - Managerial
 - o Operational
 - o Technical
- ✓ Control type
 - Preventive
 - Detective
 - Corrective
 - o Deterrent
 - Compensating
 - o Physical

MODULE 2 - EXPLAIN THE IMPORTANCE OF APPLICABLE REGULATIONS, STANDARDS, OR FRAMEWORKS THAT IMPACT ORGANIZATIONAL SECURITY POSTURE

- ✓ Regulations, standards, and legislation
 - General Data Protection Regulation (GDPR)
 - National, territory, or state laws
 - Payment Card Industry Data Security Standard (PCI DSS)
- ✓ Key frameworks
 - Center for Internet Security (CIS)
 - National Institute of Standards and Technology (NIST) Risk
 - Management Framework (RMF)
 - Cybersecurity Framework (CSF)
 - o International Organization for Standardization (ISO) 27001/27002/27701/31000
 - SSAE SOC 2 Type I/II
 - Cloud security alliance
 - Cloud control matrix
 - Reference architecture
- ✓ Benchmarks /secure Configuration guides
 - o Platform/vendor-specific guides
 - Web server
 - OS
 - Application server
 - Network infrastructure devices

MODULE 3 - EXPLAIN THE IMPORTANCE OF POLICIES TO ORGANIZATIONAL SECURITY

✓ Personnel

- Acceptable use policy
- Job rotation
- Mandatory vacation
- Separation of duties
- Least privilege
- Clean desk space
- Background checks
- Non-disclosure agreement (NDA)
- Social media analysis
- Onboarding
- Offboarding
- User training
 - Gamification
 - Capture the flag
 - Phishing campaigns
 - Phishing simulations
 - Computer-based training (CBT)
 - Role-based training
- Diversity of training techniques
- ✓ Third-party risk management
 - o Vendors
 - o Supply chain
 - Business partners
 - Service level agreement (SLA)
 - Memorandum of understanding (MOU)
 - Measurement systems analysis (MSA)
 - Business partnership agreement (BPA)
 - o End of life (EOL)
 - End of service life (EOSL)
 - o NDA
- ✓ Data
 - Classification
 - Governance
 - Retention
- Credential policies
 - o Personnel
 - o Third-party
 - Devices
 - Service accounts
 - Administrator/root accounts
- ✓ Organizational policies
 - o Change management
 - Change control
 - Asset management

MODULE 4 - SUMMARIZE RISK MANAGEMENT PROCESSES AND CONCEPTS

- ✓ Risk types
 - External
 - o Internal
 - Legacy systems
 - Multiparty
 - o IP theft
 - o Software compliance/licensing
- ✓ Risk management strategies
 - o Acceptance
 - Avoidance
 - Transference
 - Cybersecurity insurance
 - Mitigation
- ✓ Risk analysis
 - o Risk register
 - Risk matrix/heat map
 - Risk control assessment
 - Risk control self-assessment
 - Risk awareness
 - Inherent risk
 - Residual risk
 - o Control risk
 - o Risk appetite
 - Regulations that affect risk posture
 - Risk assessment types
 - Qualitative
 - Quantitative
 - o Likelihood of occurrence
 - Impact
 - Asset value
 - Single-loss expectancy (SLE)
 - Annualized loss expectancy (ALE)
 - Annualized rate of occurrence (ARO)
- ✓ Disasters
 - o Environmental
 - Person-made
 - o Internal vs. external
- ✓ Business impact analysis
 - o Recovery time objective (RTO)
 - Recovery point objective (RPO)
 - Mean time to repair (MTTR)
 - Mean time between failures (MTBF)
 - Functional recovery plans
 - Single point of failure
 - o Disaster recovery plan (DRP)
 - Mission essential functions

- o Identification of critical systems
- Site risk assessment

MODULE 5 - EXPLAIN PRIVACY AND SENSITIVE DATA CONCEPTS IN RELATION TO SECURITY

- ✓ Organizational consequences of privacy and data breaches
 - Reputation damage
 - Identity theft
 - o Fines
 - o IP theft
- ✓ Notifications of breaches
 - Escalation
 - Public notifications and disclosures
- ✓ Data types
 - o Classifications
 - Public
 - Private
 - Sensitive
 - Confidential
 - Critical
 - Proprietary
 - Personally identifiable information (PII)
 - Health information
 - Financial information
 - Government data
 - Customer data
- ✓ Privacy enhancing technologies
 - o Data minimization
 - Data masking
 - Tokenization
 - Anonymization
 - o Pseudo-anonymization
- ✓ Roles and responsibilities
 - Data owners
 - o Data controller
 - Data processor
 - o Data custodian/steward
 - Data protection officer (DPO)
- ✓ Information life cycle
- ✓ Impact assessment
- ✓ Terms of agreement
- ✓ Privacy notice

MODULO ETHICAL HACKER PER LA CERTIFICAZIONE COMPTIA PENTEST+

UNIT 1 - PLANNING AND SCOPING

MODULE 1 – COMPARE AND CONTRAST GOVERNANCE, RISK, AND COMPLIANCE CONCEPTS.

- Regulatory compliance considerations
 - o Payment Card Industry Data Security Standard (PCI DSS)
 - General Data Protection Regulation (GDPR)
- Location restrictions
 - o Country limitations
 - Tool restrictions
 - Local laws
 - o Local government requirements
 - o Privacy requirements
- Legal concepts
 - Service-level agreement (SLA)
 - Confidentiality
 - o Statement of work
 - Non-disclosure agreement (NDA)
 - Master service agreement
- Permission to attack

MODULE 2 – EXPLAIN THE IMPORTANCE OF SCOPING AND ORGANIZATIONAL/CUSTOMER REQUIREMENTS.

- Standards and methodologies
 - MITRE ATT&CK
 - Open Web Application Security Project (OWASP)
 - National Institute of Standards and Technology (NIST)
 - o Open-source Security Testing Methodology Manual (OSSTMM)
 - Penetration Testing Execution Standard (PTES)
 - o Information Systems Security Assessment Framework (ISSAF)
- Rules of engagement
 - $\circ\quad \text{Time of day}$
 - Types of allowed/disallowed tests
 - Other restrictions
- Environmental considerations
 - o Network
 - o Application
 - o Cloud
- Target list/in-scope assets
 - o Wireless networks
 - Internet Protocol (IP) ranges
 - o Domains
 - Application programming interfaces (APIs)
 - Physical locations
 - Domain name system (DNS)

- External vs. internal targets
- First-party vs. third-party hosted
- Validate scope of engagement
 - Question the client/review contracts
 - o Time management
 - Strategy
 - Unknown-environment vs. known-environment testing

MODULE 3 – GIVEN A SCENARIO, DEMONSTRATE AN ETHICAL HACKING MINDSET BY MAINTAINING PROFESSIONALISM AND INTEGRITY.

- Background checks of penetration testing team
- Adhere to specific scope of engagement
- Identify criminal activity
- Immediately report breaches/ criminal activity
- Limit the use of tools to a particular engagement
- Limit invasiveness based on scope
- Maintain confidentiality of data/information
- Risks to the professional
 - Fees/fines
 - Criminal charges

UNIT 2 – INFORMATION GATHERING AND VULNERABILITY SCANNING

MODULE 1 - GIVEN A SCENARIO, PERFORM PASSIVE RECONNAISSANCE.

- DNS lookups
- Identify technical contacts
- Administrator contacts
- Cloud vs. self-hosted
- Social media scraping
 - Key contacts/job responsibilities
 - Job listing/technology stack
- Cryptographic flaws
 - Secure Sockets Layer (SSL) certificates
 - o Revocation
- Company reputation/security posture
- Data
- Password dumps
- File metadata
- Strategic search engine analysis/enumeration
 - Website archive/caching
 - Public source-code repositories
- Open-source intelligence (OSINT)
 - o Tools
 - Shodan
 - Recon-ng
 - Sources
 - Common weakness enumeration (CWE)
 - Common vulnerabilities and exposures (CVE)

MODULE 2 – GIVEN A SCENARIO, PERFORM ACTIVE RECONNAISSANCE.

- Enumeration
 - o Hosts
 - Services
 - o Domains
 - o Users
 - Uniform resource locators (URLs)
- Website reconnaissance
 - Crawling websites
 - Scraping websites
 - Manual inspection of web links
 - robots.txt
- Packet crafting
 - Scapy
- Defense detection
 - Load balancer detection
 - Web application firewall (WAF) detection
 - Antivirus
 - Firewall
- Tokens
 - Scoping
 - Issuing
 - Revocation
- Wardriving
- Network traffic
 - Capture API requests and responses
 - Sniffing
- Cloud asset discovery
- Third-party hosted services
- Detection avoidance

MODULE 3 - GIVEN A SCENARIO, ANALYZE THE RESULTS OF A RECONNAISSANCE EXERCISE.

- Fingerprinting
 - Operating systems (OSs)
 - Networks
 - Network devices
 - Software
- Analyze output from:
 - o DNS lookups
 - Crawling websites
 - Network traffic
 - o Address Resolution Protocol (ARP) traffic
 - o Nmap scans
 - Web logs

MODULE 4 - GIVEN A SCENARIO, PERFORM VULNERABILITY SCANNING.

- Considerations of vulnerability scanning
 - o Time to run scans
 - Protocols

- Network topology
- Bandwidth limitations
- Query throttling
- Fragile systems
- Non-traditional assets
- Scan identified targets for vulnerabilities
- Set scan settings to avoid detection
- Scanning methods
 - Stealth scan
 - o Transmission Control Protocol (TCP) connect scan
 - Credentialed vs. non-credentialed
- Nmap
 - Nmap Scripting Engine (NSE) scripts
 - o Common options
 - A
 - sV
 - sT
 - Pn
 - 0
 - sU
 - sS
 - T 1-5
 - script=vuln
 - r
- Vulnerability testing tools that facilitate automation

UNIT 3 – ATTACKS AND EXPLOITS

MODULE 1 – GIVEN A SCENARIO, RESEARCH ATTACK VECTORS AND PERFORM NETWORK ATTACKS.

- Stress testing for availability
- Exploit resources
 - Exploit database (DB)
 - o Packet storm
- Attacks
 - o ARP poisoning
 - Exploit chaining
 - Password attacks
 - Password spraying
 - Hash cracking
 - Brute force
 - Dictionary
 - On-path (previously known as man-in-the-middle)
 - Kerberoasting
 - DNS cache poisoning
 - Virtual local area network (VLAN) hopping
 - Network access control (NAC) bypass
 - Media access control (MAC) spoofing
 - Link-Local Multicast Name Resolution (LLMNR)/NetBIOS- Name Service (NBT-NS) poisoning

- New Technology LAN Manager (NTLM) relay attacks
- Tools
 - Metasploit
 - Netcat
 - Nmap

MODULE 2 – GIVEN A SCENARIO, RESEARCH ATTACK VECTORS AND PERFORM WIRELESS ATTACKS.

- Attack methods
 - Eavesdropping
 - Data modification
 - Data corruption
 - Relay attacks
 - Spoofing
 - Deauthentication
 - o Jamming
 - Capture handshakes
 - On-path
- Attacks
 - o Evil twin
 - Captive portal
 - Bluejacking
 - o Bluesnarfing
 - Radio-frequency identification (RFID) cloning
 - Bluetooth Low Energy (BLE) attack
 - o Amplification attacks [Near-field communication (NFC)]
 - o WiFi protected setup (WPS) PIN attack
- Tools
 - Aircrack-ng suite
 - Amplified antenna

MODULE 3 – GIVEN A SCENARIO, RESEARCH ATTACK VECTORS AND PERFORM APPLICATION-BASED ATTACKS.

- OWASP Top 10
- Server-side request forgery
- Business logic flaws
- Injection attacks
 - Structured Query Language (SQL) injection
 - Blind SQL
 - Boolean SQL
 - Stacked queries
 - Command injection
 - Cross-site scripting
 - Persistent
 - Reflected
 - Lightweight Directory Access Protocol (LDAP) injection
- Application vulnerabilities
 - Race conditions
 - Lack of error handling

- Lack of code signing
- Insecure data transmission
- Session attacks
 - Session hijacking
 - Cross-site request forgery (CSRF)
 - Privilege escalation
 - Session replay
 - Session fixation
- API attacks
 - Restful
 - Extensible Markup Language- Remote Procedure Call (XML-RPC)
 - Soap
- Directory traversal
- Tools
 - Web proxies
 - OWASP Zed Attack Proxy (ZAP)
 - Burp Suite community edition
 - SQLmap
 - DirBuster
- Resources
 - Word lists

MODULE 4 – GIVEN A SCENARIO, RESEARCH ATTACK VECTORS AND PERFORM ATTACKS ON CLOUD TECHNOLOGIES.

- Attacks
 - Credential harvesting
 - o Privilege escalation
 - Account takeover
 - Metadata service attack
 - Misconfigured cloud assets
 - Identity and access management (IAM)
 - Federation misconfigurations
 - Object storage
 - Containerization technologies
 - Resource exhaustion
 - Cloud malware injection attacks
 - Denial-of-service attacks
 - Side-channel attacks
 - Direct-to-origin attacks
- Tools
 - Software development kit (SDK)

MODULE 5 – EXPLAIN COMMON ATTACKS AND VULNERABILITIES AGAINST SPECIALIZED SYSTEMS.

- Mobile
 - Attacks
 - Reverse engineering
 - Sandbox analysis
 - Spamming

- Vulnerabilities
 - Insecure storage
 - Passcode vulnerabilities
 - Certificate pinning
 - Using known vulnerable components (i) Dependency vulnerabilities (ii) Patching fragmentation
 - Execution of activities using root
 - Over-reach of permissions
 - Biometrics integrations
 - Business logic vulnerabilities
- Tools
 - Burp Suite
 - Drozer
 - Mobile Security Framework (MobSF)
 - Postman
 - Ettercap
 - Frida
 - Objection
 - Android SDK tools
 - ApkX
 - APK Studio
- Internet of Things (IoT) devices
 - BLE attacks
 - Special considerations
 - Fragile environment
 - Availability concerns
 - Data corruption
 - Data exfiltration
 - Vulnerabilities
 - Insecure defaults
 - Cleartext communication
 - Hard-coded configurations
 - Outdated firmware/hardware
 - Data leakage
 - Use of insecure or outdated components
- Data storage system vulnerabilities
 - Misconfigurations—on-premises and cloud-based
 - Default/blank username/password
 - Network exposure
 - Lack of user input sanitization
 - Underlying software vulnerabilities
 - Error messages and debug handling
 - Injection vulnerabilities
 - Single quote method
- Management interface vulnerabilities
 - Intelligent platform management interface (IPMI)
- Vulnerabilities related to supervisory control and data acquisition (SCADA)/ Industrial Internet of Things (IIoT)/ industrial control system (ICS)
- Vulnerabilities related to virtual environments
 - Virtual machine (VM) escape

- Hypervisor vulnerabilities
- VM repository vulnerabilities
- Vulnerabilities related to containerized workloads

MODULE 6 - GIVEN A SCENARIO, PERFORM A SOCIAL ENGINEERING OR PHYSICAL ATTACK.

- Pretext for an approach
- Social engineering attacks
 - o Email phishing
 - Whaling
 - Spear phishing
 - Vishing
 - Short message service (SMS) phishing
 - Universal Serial Bus (USB) drop key
 - Watering hole attack
- Physical attacks
 - Tailgating
 - Dumpster diving
 - Shoulder surfing
 - Badge cloning
- Impersonation
- Tools
 - Browser exploitation framework (BeEF)
 - Social engineering toolkit
 - Call spoofing tools
- Methods of influence
 - Authority
 - Scarcity
 - Social proof
 - Urgency
 - Likeness
 - Fear

MODULE 7 - GIVEN A SCENARIO, PERFORM POST-EXPLOITATION TECHNIQUES.

- Post-exploitation tools
 - o Empire
 - Mimikatz
 - BloodHound
- Lateral movement
 - Pass the hash
- Network segmentation testing
- Privilege escalation
 - Horizontal
 - Vertical
- Upgrading a restrictive shell
- Creating a foothold/persistence
 - o Trojan
 - o Backdoor
 - Bind shell
 - Reverse shell
 - Daemons

- Scheduled tasks
- Detection avoidance
 - Living-off-the-land techniques/fileless malware
 - PsExec
 - Windows Management Instrumentation (WMI)
 - PowerShell (PS) remoting/Windows Remote Management (WinRM)
 - Data exfiltration
 - Covering your tracks
 - Steganography
 - Establishing a covert channel
- Enumeration
 - Users
 - Groups
 - Forests
 - Sensitive data
 - Unencrypted files

UNIT 4 – REPORTING AND COMMUNICATION

MODULE 1 - COMPARE AND CONTRAST IMPORTANT COMPONENTS OF WRITTEN REPORTS.

- Report audience
 - o C-suite
 - o Third-party stakeholders
 - Technical staff
 - Developers
- Report contents (** not in a particular order)
 - Executive summary
 - Scope details
 - Methodology
 - Attack narrative
 - Findings
 - Risk rating (reference framework)
 - Risk prioritization
 - Business impact analysis
 - Metrics and measures
 - Remediation
 - Conclusion
 - Appendix
- Storage time for report
- Secure distribution
- Note taking
 - Ongoing documentation during test
 - Screenshots
- Common themes/root causes
 - Vulnerabilities
 - Observations
 - Lack of best practices

MODULE 2 – GIVEN A SCENARIO, ANALYZE THE FINDINGS AND RECOMMEND THE APPROPRIATE REMEDIATION WITHIN A REPORT.

- Technical controls
 - System hardening
 - Sanitize user input/parameterize gueries
 - o Implemented multifactor authentication
 - Encrypt passwords
 - Process-level remediation
 - Patch management
 - Key rotation
 - o Certificate management
 - o Secrets management solution
 - Network segmentation
- Administrative controls
 - Role-based access control
 - Secure software development life cycle
 - o Minimum password requirements
 - Policies and procedures
- Operational controls
 - o Job rotation
 - o Time-of-day restrictions
 - Mandatory vacations
 - User training
- Physical controls
 - o Access control vestibule
 - o Biometric controls
 - Video surveillance

MODULE 3 – EXPLAIN THE IMPORTANCE OF COMMUNICATION DURING THE PENETRATION TESTING PROCESS.

- Communication path
 - o Primary contact
 - o Technical contact
 - Emergency contact
- Communication triggers
 - o Critical findings
 - Status reports
 - Indicators of prior compromise
- Reasons for communication
 - o Situational awareness
 - De-escalation
 - Deconfliction
 - Identifying false positives
 - Criminal activity
- Goal reprioritization
- Presentation of findings

MODULE 4 - EXPLAIN POST-REPORT DELIVERY ACTIVITIES.

Post-engagement cleanup

- Removing shells
- Removing tester-created credentials
- o Removing tools
- Client acceptance
- Lessons learned
- Follow-up actions/retest
- Attestation of findings Data destruction process

UNIT 5 – EXPLAIN USE CASES OF THE FOLLOWING TOOLS DURING THE PHASES OF A PENETRATION TEST.

Scanners

- Nikto
- Open vulnerability assessment scanner (Open VAS)
- o SQLmap
- Nessus
- Open Security Content Automation Protocol (SCAP)
- Wapiti
- o WPScan
- o Brakeman
- Scout Suite

Credential testing tools

- o Hashcat
- Medusa
- Hydra
- CeWL
- John the Ripper
- o Cain
- Mimikatz
- Patator
- DirBuster

Debuggers

- OllyDbg
- o Immunity Debugger
- GNU Debugger (GDB)
- WinDbg
- Interactive Disassembler (IDA)
- Covenant
- SearchSploit

OSINT

- o WHOIS
- Nslookup
- Fingerprinting Organization with Collected Archives (FOCA)
- o theHarvester
- Shodan
- Maltego
- Recon-ng
- o Censys

Wireless

- o Aircrack-ng suite
- Kismet

- o Wifite2
- o Rogue access point
- o **EAPHammer**
- o mdk4
- o Spooftooph
- o Reaver
- Wireless Geographic Logging Engine (WiGLE)
- o Fern
- Web application tools
 - OWASP ZAP
 - Burp Suite
 - o Gobuster
 - o w3af
- Social engineering tools
 - Social Engineering Toolkit (SET)
 - o BeEF
- Remote access tools
 - Secure Shell (SSH)
 - o Ncat
 - Netcat
 - ProxyChains
- Networking tools
 - Wireshark
 - o Hping
- Misc.
 - SearchSploit
 - Responder
 - Impacket tools
 - o Empire
 - Metasploit
 - o mitm6
 - CrackMapExec
 - o TruffleHog
 - Censys
- Steganography tools
 - Openstego
 - Steghide
 - o Snow
 - o Coagula
 - Sonic Visualiser
 - o TinEye
- Cloud tools
 - Scout Suite
 - CloudBrute
 - o Pacu
 - o Cloud Custodian

LABORATORI PRATICI COMPTIA SECURITY PLUS

- 01: Exploring the Lab Environment
- 02: Scanning and Identifying Network Nodes
- 03: Intercepting and Interpreting Network Traffic with Packet Sniffing Tools
- 04: Analyzing the Results of a Credentialed Vulnerability Scan
- 05: Installing, Using, and Blocking a Malware-based Backdoor
- 06: Performing Network Reconnaissance and Vulnerability Scanning
- 07: Managing the Life Cycle of a Certificate
- 08: Managing Certificates with OpenSSL
- 09: Auditing Passwords with a Password Cracking Utility
- 10: Managing Centralized Authentication
- 11: Managing Access Controls in Windows Server
- 12: Configuring a System for Auditing Policies
- 13: Managing Access Controls in Linux
- 14: Configuring Identity and Access Management Controls
- 15: Implementing a Secure Network Design
- 16: Configuring a Firewall
- 17: Configuring an Intrusion Detection System
- 18: Implementing Secure Network Addressing Services
- 19: Implementing a Virtual Private Network
- 20: Implementing a Secure SSH Server
- 21: Implementing Endpoint Protection
- 22: Securing the Network Infrastructure
- 23: Identifying Application Attack Indicators
- 24: Identifying a Browser Attack
- 25: Implementing PowerShell Security
- 26: Identifying Malicious Code
- 27: Identifying Application Attacks

- 28: Managing Data Sources for Incident Response
- 29: Configuring Mitigation Controls
- 30: Acquiring Digital Forensics Evidence
- 31: Backing Up and Restoring Data in Windows and Linux
- 32: Managing Incident Response, Mitigation and Recovery
- 25 ore totali di laboratori
- Per ogni laboratorio è fornito un tutorial scritto e illustrato su come svolgere il laboratorio passo dopo passo
- La piattaforma dei laboratori è in CLOUD

La durata di ogni singolo laboratorio varia tra i 20 ed i 60 minuti

LABORATORI PRATICI COMPTIA PENTEST PLUS

- 01: Exploring the Lab Environment
- 02: Exploring the Domain Tools: Nslookup, Dig, and Whois
- 03: Navigating Open-Source Intelligence Tools
- 04: Understanding Social Engineering Toolkit (SET)
- 05: Understanding Spear Phishing and Credentials Attack
- 06: Exploring OpenVAS
- 07: Using Web Scanners
- 08: Understanding Nmap Common Usage
- 09: Scanning a Vulnerable System
- 10: Understanding Scan Output
- 11: Navigating Steganography Tools
- 12: Demonstrating Enumeration Techniques
- 13: Exploring the Basics of Metasploit
- 14: Using VSFTP Manual and Metasploit
- 15: Monitoring with Aircrack-ng
- 16: Discovering IoT devices with Shodan
- 17: Using SQL Injection
- 18: Using Reverse and Bind Shells
- 19: Analyzing Exploit Code
- 20: Exploring Programming Shells
- 21: Applying PenTest Automation
- 22: Exploring Password Attacks with John the Ripper and Hydra
- 12 ore 30 minuti di laboratori
- Per ogni laboratorio è fornito un tutorial scritto e illustrato su come svolgere il laboratorio passo dopo passo
- La piattaforma dei laboratori è in CLOUD
- La durata di ogni singolo laboratorio varia tra i 30 ed i 60 minuti

